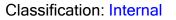


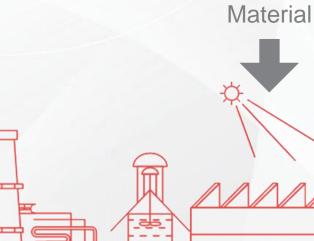
Sustainable Solutions for Energy Transition in Chemical & Pharma Industries


Thermax Limited

Our Vision

To be a globally respected high performance organisation offering sustainable solutions in energy and environment

Raw


Power

Heating

Wastewater **Treatment**

Cooling Utilities

Waste

Water **Treatment**

Desired **Product**

Chemical

Accelerating Decarbonisation

Sustainable Energy & Environment Solutions

(Capex / O&M)

Green Utility
Solutions under
Build-Own-Operate

From investment to lifecycle responsibility

Green Hydrogen

Accelerating Decarbonisation

Sustainable
Energy & Environment
Solutions

(Capex / O&M)

Green Utility
Solutions under
Build-Own-Operate

From investment to lifecycle responsibility

Green Hydrogen

Sustainable Solutions by Thermax

Clean Air

Clean Water

Clean Energy

Sustainable Solutions by Thermax

Clean Energy

Process Heating

Steam Engineering

Cooling & Heating

Biomass as an alternative green fuel

Biomass is a carbon neutral fuel as the Carbon dioxide generation in the process of combustion is balanced by the carbon dioxide absorption in the plant growth period.

Challenges

Lower bulk density and lower calorific value

Higher moisture level

Fouling and slagging characteristics of biomass ash

Seasonal variation in biomass fuel

Biomass-Based Heating Technologies

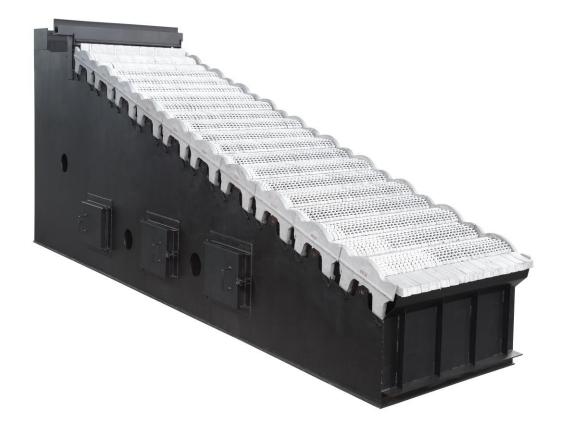
55+ years of understanding heating needs of the process industries

30+ years of biomass-based solutions expertise


Wide range of technologies to combust 100+ biomass fuels

Persistent research and innovation to meet everchanging market demands

Thermax Biomass Centre of Excellence's commitment towards technology leadership


Common biomasses and their classifications

Groundnut DOC

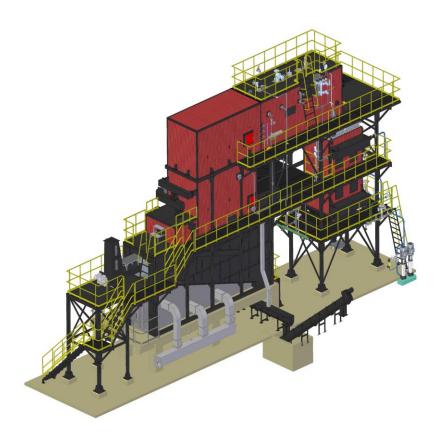
Combustion technology for biomass fuels

Reciprocating Grate Technology from Lambion, Germany

Reciprocating Motion

 Reciprocating action of the alternate grate pushes fuel into different combustion zones causing toppling and intermixing of the fuel to achieve effective combustion, even for bulky and high moisture fuels

Multiple Trolley


- Multiple trolleys controlled by independent hydraulic cylinders operate at different speeds to meet the time requirement of different combustion stages
- Multiple trolleys provided with different air connections to ensure independent zone-wise air distribution

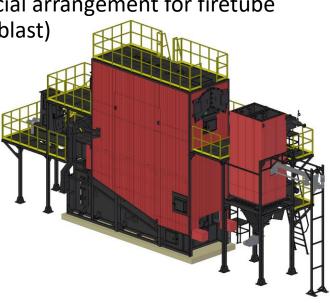
Multiple grate bar geometry

- Multiple grate bar geometries, namely block, full nozzle, half nozzle, and side plates for width and length-wise air control within the same trolley
- Avoids tongue effect

Products and solutions with reciprocating grate technology- wide range of offering

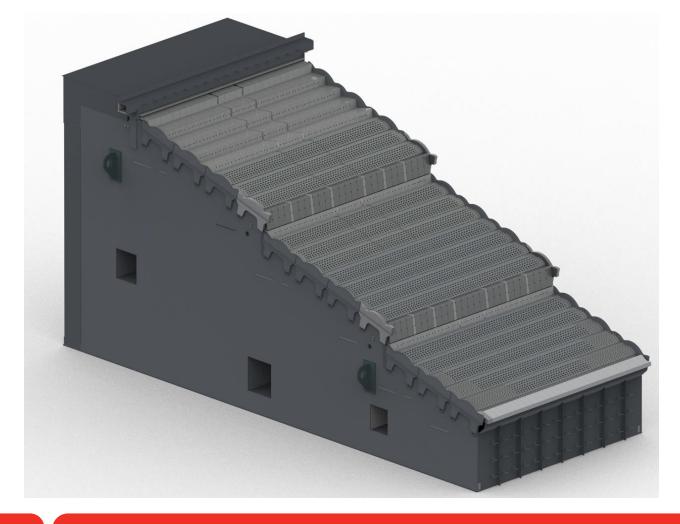
CPRG- Biomass fired hybrid boiler

BDRG- Biomass fired water tube boiler



HTRG- Biomass fired Thermal oil heater

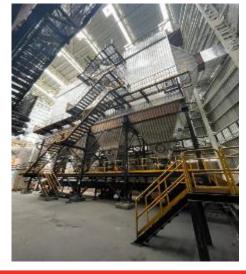
UPRG - Ultracompact, competitive and reliable biomass boiler for extremely fouling fuel



- Inclined membrane wall
- Multiple pass furnace
- Baffle wall arrangements for division of furnace in multiple passes
- Secondary and tertiary air
- Multiple convective passes with varied tube diameter Special arrangement for firetube cleaning (Danblast)

- Ultimate fuel flexibility (Rice husk, woodchips, groundnut husk, PKS, soya husk, mustard stalk, coffee husk, ply waste, briquette, pellet, palm fiber, cashew shell, cotton stalk, EFB etc)
- Highest uptime Reduced slagging and fouling
- Refractory 70 % reduction in refractory
- Compactness- 30 % less footprint area in comparison with conventional hybrid design
- Reliability- Elimination of refractory
- Ease in erection- Packaged solution, modular design, less refractory

Introducing Universal Bio Grate


- Open fire burning of Stubble leading to high emission in surrounding areas (Pollution in Delhi/NCR region due to stubble burning in Punjab)
- It requires special grate to deal with biomass wastes with extremely low bulk density.
- Multiple trolley design with independent air connection
 - ✓ Finer control on speed
 - ✓ First trolley designed to operate with higher speed to reduce accumulation
 - ✓ Second/ Other trolleys designed to operate with very low speed to provide desired residence time
 - ✓ Independent air control to meet the combustion requirements on each trolley
- Sharp step between trolley to promote intermixing of the fuel (Tumbling action)
- Optimal use of block grate bar- Initial section is made of sharp block grate bar for maximizing force for effective pushing of tall fuel layer to reduce accumulation. Other section of the grate is made of full nozzle grate to accelerate combustion
- Multiple perforation casting design for width wise air distribution
- Solution can be extended for other low bulk density, low calorific value, low grade fouling fuels like maize straw, wheat straw, sugarcane trash, jaggery bagasse, and jute caddy.

Green Steam Supply to Biocon, Bengaluru

PROJECT:

- Location: Bengaluru, Karnataka.
- Solution: Hybrid boiler with reciprocating grate installed by TOESL in a limited space of 966 m² with a 'G+1' layout (ground floor fuel storage, first floor boiler plant)
- Boiler Capacity (F&A 100°C): 30 TPH MCR / 17.5 kg/cm² (g)

BENEFITS:

- Reliable steam supply from 100% agro-waste biomass fired boiler in compromised space.
- Guaranteed supply of quality biomass for round the year operation.
- Est. CO₂e reduction: ~30,000 tons/year against gas. (Equivalent to ~72,000 barrels of oil consumed)
- 100% HSE compliance and uptime delivered as per commitments.

PARTNERSHIP WITH BIOCON

 Received constant customer appreciation for execution of large capacity biomass fired boiler plant on 'G+1' layout, enabling Biocon towards energy transition and cost savings.

Ultra Low Pressure & Hot Water Driven Chillers

HEAT ENERGY IN THE FORM OF

- Fryer
- Steamer Vapour
- Chemical Vapour
- Flash Steam

HEAT SOURCE: Vapour **PRESSURE:** 0.0 – 0.3 bar **CAPACITY:** 50 – 2000 TR

COP: 0.75

L5 SERIES

HEAT ENERGY IN THE FORM OF

- Engine jacket water
- Hot water from solar collectors
- Process condensate
 Fuel cells
- Flue gas recovery from incinerators
- Process heat recovery

HEAT SOURCE: Hot Water

INLET WATER TEMPERATURE: 80°C – 120°C

CAPACITY: 180 - 1650 TR

COP: 0.8

HEAT PUMP VARIANTS

Absorption Heat Pump

Energy savings Up to 40%

Water Savings: 60%

Heating Capacity: 0.25-40MW

Hot Water Output: Upto 110°C

CO2 Reduction: Upto 90%

Steam Pressure: 2-10 bar

COP: 1.7 -1.8

Electrical Heat Pump

Achieve Maximum Operational Savings

Heating Capacity: 50 kW to 2000 kW per single unit

Hot Water Output: Upto 120°C

Energy Savings up to 80%

Simultaneous Cooling generation capacity Upto 60%

COP: 1.8 – 6

Hybrid Heat Pump

Achieve 40% cost savings

Capacity: From 400 kW (Heating)

Heating Capacity: 0.25-40MW

Hot Water Output: Upto 120°C

Water Savings: Upto 30%

Direct Fuels Savings: Upto 40%

Simultaneous Cooling generation capacity

Upto 30%

Feasibility Work out for AHP vs PHE

ГΗ	ER	M.	AX

	OPERATIONAL COST SAV	ING ANALYSIS FOR ABSORPTION	I HEAT PUMP	
SI. No.	DESCRIPTION	UNIT	STEAM TO HOT WATER HEAT EXCHANGER	STEAM DRIVEN ABSORPTION HEAT
ı	COOLING CAPACITY	TR	0	745
II	HEATING CAPACITY	kW	2000	2000
III	APPLICATION		Simultaneous Heating & Cooling	
IV	Energy/heat source		Steam from Coal	Steam from Coal & Power
V		ENERGY COST DETAILS		
i	Cost of Power (Unit Cost+Demand+Peak Charges+Other Costs)	Rs./kWh	8.00	
ii	Steam Cost -Coal Fired Boiler	Rs/kg	2.00	
VI	S	TEAM CONSUMPTION DETAILS		
i	Heat Duty	kW	2000	2000
ii	Steam Consumption for heating	KG/Hr	3353	2347
vi	Total Steam cost	Rs./hr	6706	4694
VIII	P	OWER CONSUMPTION DETAILS		
i	Total Power Consumption	kWh	0.00	28
ii	Power Cost	Rs./hr	0.00	224
IX		OPERATIONAL COST ANALYSIS		
i	Operational Cost/Hr	Rs./hr	6706	4918
Χ	Savings	Rs./hr		1788
i	Annual Energy Savings-8000 Hours Operation	Lacs/Annum		143.0
ii	Water Savings (Evaporation Loss+Blow Down Loss)	M3/Hr		1.2
iii	Water Saving Per Annum (80 Rs/KL Treated Water Cost)	Lacs/Annum		8
iv	Total Savings (Energy+Water)	Lacs/Annum		151
٧	CO2 Emission	Tons/Annum	10828	7763
vi	CO2 Emission Reduction	Tons/Annum		3065
ΧI		ROI		
	Total Capex	Lacs	60	230
	Differential Investment	Lacs		170
	ROI	Months		14

SUCCESS STORY

Profitable way of Decarbonizing in a process Industry

Absorption Heat Pump

Problem Statement:

Customer was looking to reduce carbon emission & operation cost by optimizing steam consumption & water consumption

Solution:

Thermax offered end to end Absorption Heat Pump solution to Reduce Gas consumption, water consumption & carbon emission. The solution produces hot water at temperatures up to 95°C, ensuring cost savings of up to 30% compared to traditional methods, while also generating cooling capacity, solutions

Result:

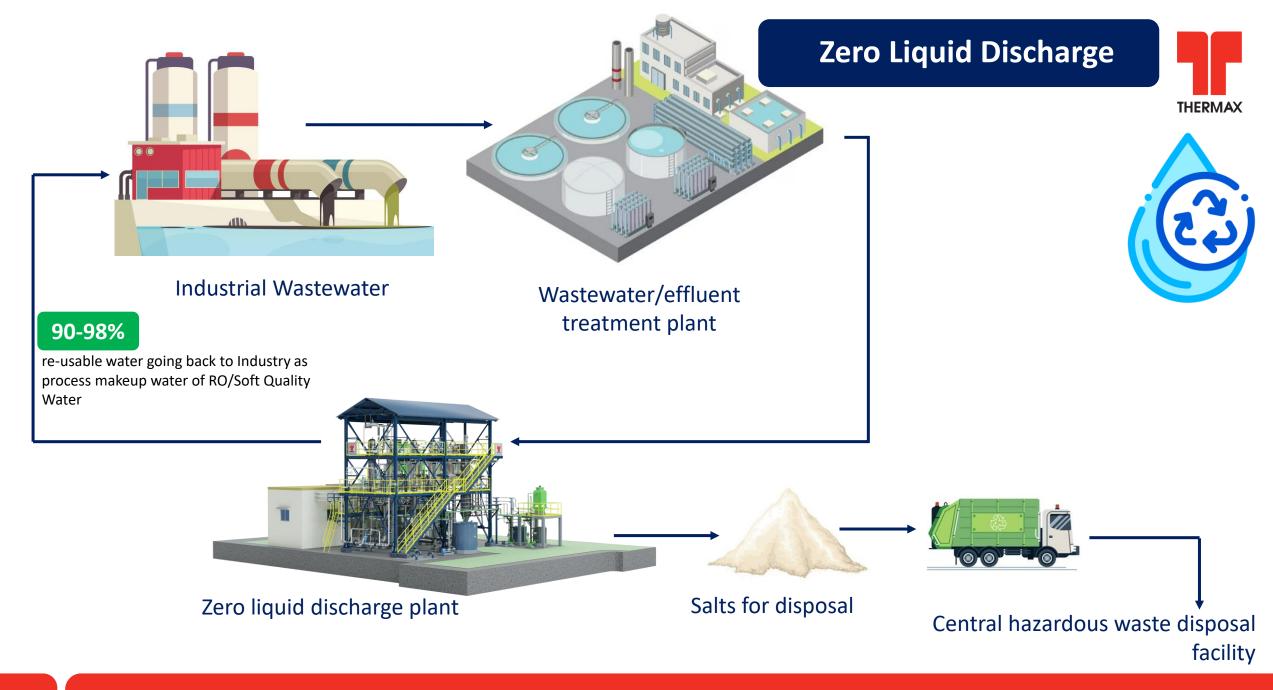
1	Co2 Emission Reduced Per Year in Tons	2585
2	Water Savings / Year in M3	16830
3	Overall Operational Savings / Year in Lakhs	153

THERMAX

Electrical Heat Pumps

- Water Source EHP (400 kW)
- Hot Water temperature 92^oC
- Application: Sugar Dissolving & Pasteurization process – Potential to proliferate across beverages industries.
- Overall Opex Savings About 100 Lacs with a payback period of Less than 2 years

Sustainable Solutions by Thermax



Water and Waste Solutions

Mechanical Vapour Recompression (MVR)

Features	MVR
Description	Mechanical Vapor Re-Compressor
Utilities required	Electricity
Operating Cost*	Rs. 0.7 to 0.9/ltr
Carbon Footprint	Low
Utility equipment required	No
Manpower requirement to operate the plant	Less
Space requirement	Less
Cooling water requirement for vapor condensation	No

ation: Internal

Features	MEE
Description	Multiple Effect
Description	Evaporator
Utilities required	Steam & Electricity
Operating Cost*	Rs. 1.2 to 1.4/ltr
Carbon Footprint	High
Utility equipment	WTP, Boiler & Air
required	pollution equipment
Manpower	
requirement to	More
operate the plant	
Space	30 to 40% More
requirement	than MVR
Cooling water	
requirement for	Yes
vapor	163
condensation	

Multi-effect Evaporator (MEE)

Largest installed capacity of MEE

500 KLD

22 In-house designed, commissioned and installed Advanced Multi-Effect Evaporators (MEE)

Largest MVR under execution

250 KLD

12 In-house designed, commissioned and installed
Advanced
Mechanical Vapour Recompression (MVR)

Zero Liquid Discharge

Operation and maintenance

More than 20 Plants experience for MVR MEE

Complete water reuse and zero liquid discharge to meet ESG goals

Sector : Chemical Rishra, West Bengal

System: 113 KLD MEE followed by ATFD

THERMAX

Background:

 With increasing water scarcity, changing regulations, Jayashree was looking at water reuse and zero liquid discharge to meet their water-related environmental, sustainability and governance goal.

Requirement:

- Reuse of process condensate water and achieve ZLD.
- All heat exchanger tubes MOC shall be of Titanium Grade2.
- All liquid contact MOC shall be of SS 316L.

Scheme:

 Quadruple Effect Force Type Evaporator followed by Agitated Thin Film dryer.

Achievements:

- **99% water recovery** as a process condensate which is being used in process.
- Not a single drop of liquid discharge to soil, this achieved complete zero liquid discharge.
- Discharge is in form of dry powder having moisture less than 10%. w/w.
- Complete operation of system is through HMI.
- Single switch operations from HMI i.e. fully automated.

Safety at site:

- No safety violations
- Zero accidents and no penalty

Complete water reuse and zero liquid discharge to meet ESG goals

Sector : Chemical Rishra, West Bengal

System: 113 KLD MEE followed by ATFD

Parameter	RO3 Reject (Design)	MEE Outlet
На	11.15	8.55
TDS	45648	8852
TSS		52
Calcium as Ca	23.07	148.9
Magnesium as Mg	23.07	70.6
Chloride as Cl	25356	625.3
Colloidal silica as SiO2		4.8
Reactive silica as SiO2		79
Total silica as SiO2	306.35	83.8
Fluoride as F	24.54	1.2
Bicarbonate as HCO3	5.72	4362
Carbonate as CO3	1138.78	237.6
Boron as B	0	0.82
Barium as Ba	0	< 0.1
Carbon dioxide	0	< 0.1
COD		877
BOD		203
Nitrate as NO3	48.07	65.1
Potassium as K	18.13	542
Sodium as Na	17734.54	1428
Sulphate as SO4	945.73	1038
Total Nitrogen		104.1
Total ammonia as NH3	0	38.6

One stop clean water solution for

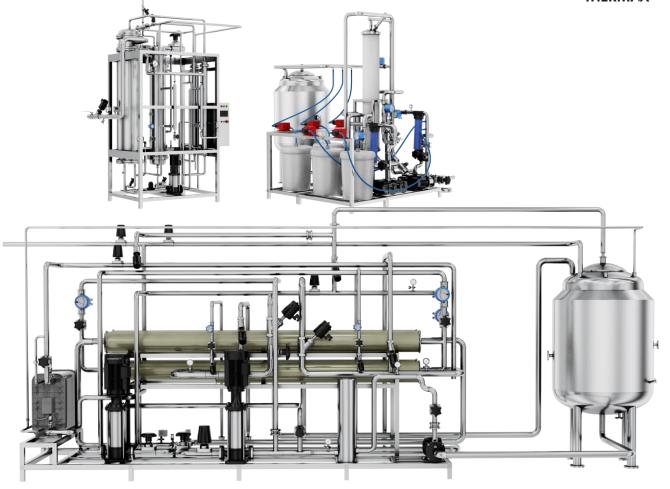
Pharma/Biotech and FMCG Industries

Water Treatment Systems

- Multi grade filters
- Activated carbon filters
- Iron removal filters
- Softener
- Ultrafiltration
- Reverse osmosis
- Electro-deionization
- DM plant

Distribution Systems

- Purified water with SCADA and automation
- WFI with SCADA and automation
- Pure steam distribution
- Process piping for product transfer


Tanks & Vessels

- PW tanks
- WFI tanks
- · Process vessels
- · Product storage tanks
- Sterile manufacturing vessels

CIP-SIP Systems

- CIP systems
- · SIP systems

One stop clean water solution for Pharma/Biotech and FMCG Industries

Wockhardt, Waluj, Aurangabad

Indian Pharmaceutical and Biotechnology Company

Application: Sterile Insulin | Capacity: 400,000 Litres per Day

Background:

- Our mandate for Wockhardt India's biotech facility in Waluj was to deliver a high purity water treatment plant with a capacity of 400,000 litres of purified water per day making it one of the largest plants in India.
- Their Effluent Treatment plant was being over utilised.

Solution:

 We have designed a water system that also minimised the load on the ETP resulting in a reduction of wastage from 35 percent to 5 percent.

Water System Specifications

- Pre-treatment
- Pre-ultra filtration
- Reverse osmosis
- Softening plant
- High purity RO system
- Electrodeionization unit
- High purity water distribution system

Fidson Healthcare Plc.

Largest Pharmaceutical Company in Nigeria

Application: Injectables & Solid Dosage | Capacity: 6000 litres per hour

Background:

 Project seemed like a regular water optimisation project with a total TDS of under 330 ppm which could be resolved with a single pass RO.

Challenges:

- Our testing and analysis revealed that the pH of the water was too low (5.2 in this instance).
- To increase the pH value as per feed limiting conditions of RO, pH correction dosing to be done, and due to the same TDS increased to 500 ppm.

Solution:

- Offered a double pass RO which none of our competitors had realised.
- While our cost of the project was higher than the competition all of whom quoted for a single pass RO, we saved the client a lot of money by correctly diagnosing the requirement and preventing future plant failure and loss of business.
- We also installed RO to minimise reject water.

Water System Specifications:

- Pre-treatment
- Softening plant
- Double pass reverse osmosis
- RO System
- Electrodeionization unit
- Post ultra filtration
- High purity water distribution system

Sustainable Solutions by Thermax

Clean Air Solutions

Gaseous Segment

Particulate Segment

FGD

- Dry Type
- Semi-dry Type
- Wet Type

Scrubbers

- Packed Bed
- Spray Towers
- Plate

ESP

- Dry Type
- Wet Type

Bag House

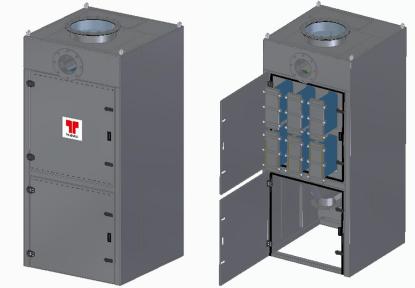
- Pulse Jet
- Reverse Air

Hybrid System

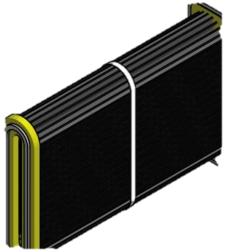
- ComboFilter ®
- Cyclomax Plus
- Electrostatic Fabric
 Filter

Scrubbers

- Venturi
- Cyclonic



Thermax Pocket Cartridge Filter for Dust Collection



>>> Key Features

- Compact Design: 33% less footprint area than competition
- Best in Class Filtration Media
- 99.9% Filtration efficiency
- Maintenance friendly Easy Filter Replacement & Dust Disposal Arrangement
- Compliance with NFPA & ATEX safety standards

Pharma Industry Applications

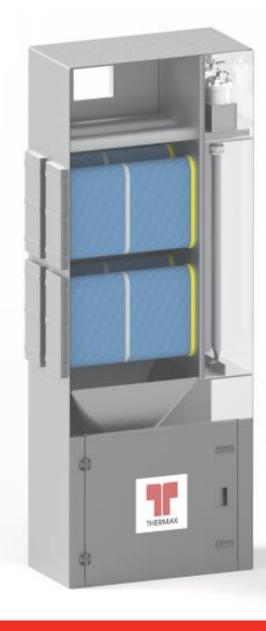
- → Tablet Coating
- → Fluidized Bed Dryer
- → Tablet Compression
- → Mixing & Sieving

Chemical Industry Applications

- → Material Handling: Bag Dumping, Grinding, Material Conveying, Extruder Lines etc.
- → TSD Mixer
- → Automatic Bagging Machine

Success Story

Customer: Pharma Equipment OEM


• Application: Dust collection from Fluidized Bed Dryer (FBD)

• Thermax Product: Thermax Pocket Cartridge with HEPA Filter

Challenges & Solutions

Customer Requirement	Solution
Limited space availability	Thermax Cartridge filter equipped with HEPA filter requires 33% less space than the alternatives in the market.
High temperature working condition of 120°C	Constructed with specialized temperature resistant mold material suitable for high temperature applications
Safety Feature for ensuring workplace safety	Concurrent flow dust collector facilitates installation of explosion vent on the dust collector top, which enhance safety

Important Consideration in Dust Handling

Flammable Dust

OE Level (Potent Dust)

Outlet Emission

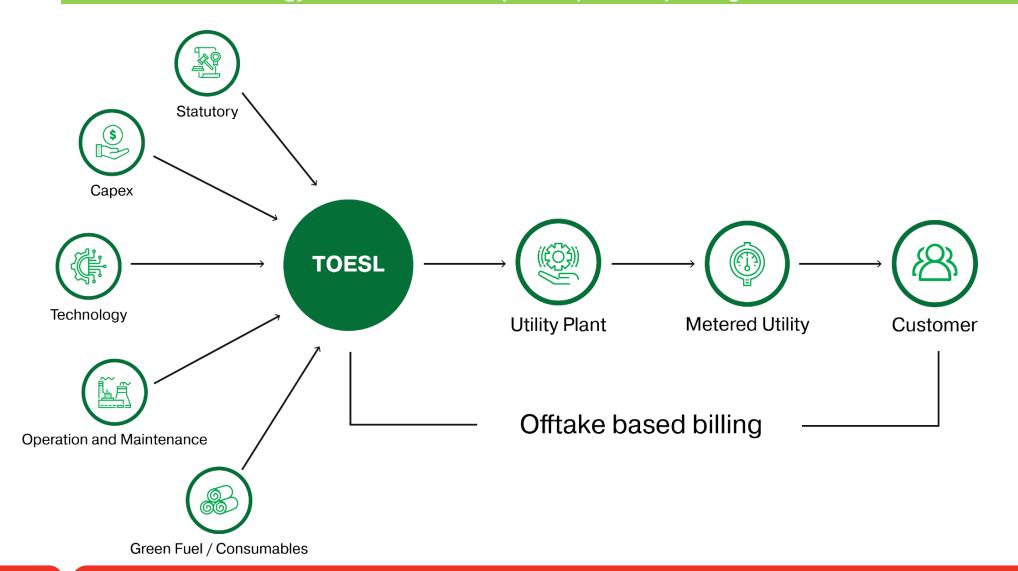
Hygroscopic & Sticky Dust

Accelerating Decarbonisation

Sustainable Energy & Environment Solutions

(Capex / O&M)

Green Utility
Solutions under
Build-Own-Operate


From investment to lifecycle responsibility

Green Hydrogen

Green Utility Solutions under Build-Own-Operate

Thermax Onsite Energy Solutions Limited (TOESL) – championing sustainable solutions in industries

Utility Delivery Solutions

Steam & Heat (Boiler & Heater)

Chilled Water (Cooling & Heating)

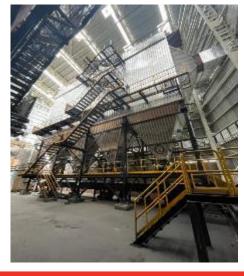
Treated Water

(Water & Wastewater Treatment)

Co-generation (Power)

Multi utility

(Above + Comp. Air, CT, Elec Chiller, DG, etc.)


> BioCNG, Gasification

Green Steam Supply to Biocon, Bengaluru

PROJECT:

- Location: Bengaluru, Karnataka.
- Solution: Hybrid boiler with reciprocating grate installed by TOESL in a limited space of 966 m² with a 'G+1' layout (ground floor fuel storage, first floor boiler plant)
- Boiler Capacity (F&A 100°C): 30 TPH MCR / 17.5 kg/cm² (g)

BENEFITS:

- Reliable steam supply from 100% agro-waste biomass fired boiler in compromised space.
- Guaranteed supply of quality biomass for round the year operation.
- Est. CO₂e reduction: ~30,000 tons/year against gas. (Equivalent to ~72,000 barrels of oil consumed)
- 100% HSE compliance and uptime delivered as per commitments.

PARTNERSHIP WITH BIOCON

 Received constant customer appreciation for execution of large capacity biomass fired boiler plant on 'G+1' layout, enabling Biocon towards energy transition and cost savings. "Profit is not only a set of figures, but of values."

Rohinton D. Aga

Chairman, Thermax (1935 - 1996)

Boundlessly bridging the gap between energy availability and sustainability

Thank You

Conserving Resources, Preserving the Future.

For more information about Thermax:

Contact Us

Thermax Limited

Thermax House 14, Mumbai - Pune Road, Wakdewadi, Pune - 411 003, India

www.thermaxglobal.com

