

Silver Jubilee Ye

CII 25th National Award for Excellence in Energy Management 10 - 12 September 2024 HICC, Hyderabad

2024

Name
Ashish Zitshi
Vishal Kulkar
Ganesh Kum
Indranil Kand

Cipla

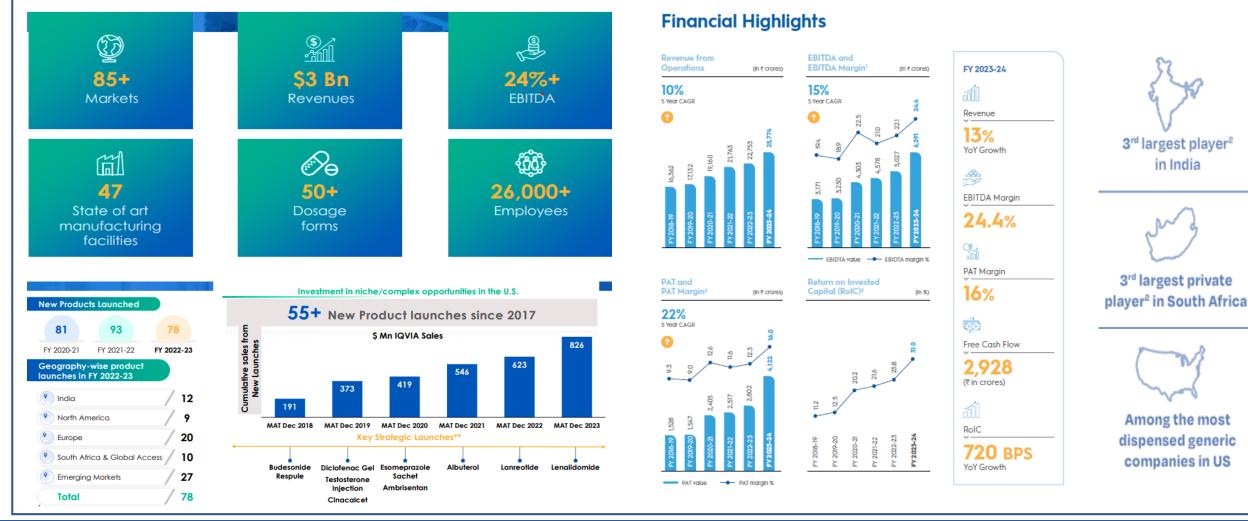
Caring for Life

shi Vice President Karni Director umawat Manager anawade Asst. Manager

Designation

UNITI: FFS and Liquid Plant

UNIT II : Aerosol (Inhaler) Plant


UNIT III : Storile Plant

UNIT IV : Tablete, Capsule and Efforvescent Plant

Brief Introduction of Company

Cipla

Established in 1935, Cipla is a global pharmaceutical company with a strong commitment to make medicines accessible and affordable to those in need.

Major Sections and Manufacturing Process

Products :-FFS/BFS Eye drops, Liquid Orals, Respules

Unit 01

Unit 02 Products :-Aerosol (HFA) Hydro **Floro Alkane - Inhalers**

Unit 03 **Products :- Nasal Spray, Eye Drops & Prefilled**

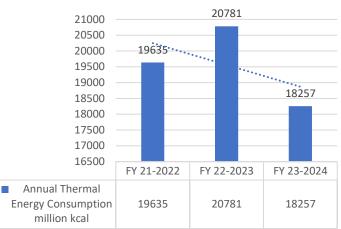
Syringes

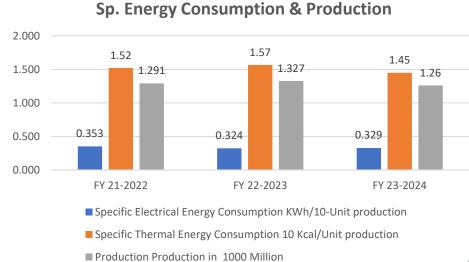
Unit 04

Products :-

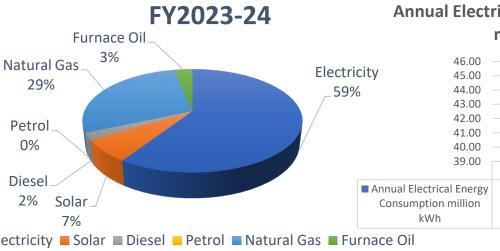
General Tablets, Effervescent Tablets, Multi-Halers, Hard Gelatin Capsules, ≡ו **Powder & Pellets** 2 Weighing-Milling-Dosing / 3 Granulation / 4 Blending / Material / Nguyên tiêu Con-Xay-Dinh lurong Tao hat Trón khô 1.000 T. 5b Tableting / Capsule Filling / 6 Coating / 7 Blistering / Sachet Filling / Cartoning / Épvi Đóng hộp Dong nang Dáp viáo Ep gól Bao vián 122

The 40% area covered for Green belt

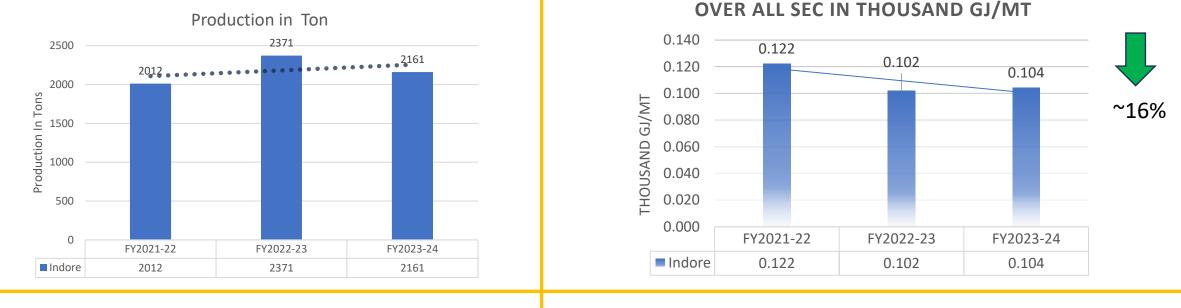

Energy Consumption in last 3 years



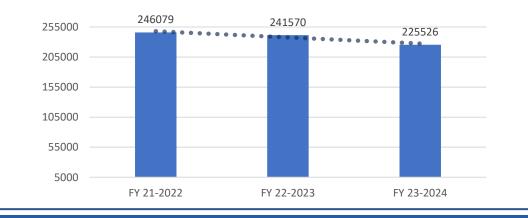
Sr No	Parameters	Unit of Measurements	FY 21-2022	FY 22-2023	FY 23-2024
1	Annual Electrical Energy Consumption	million kWh	45.56	42.97	41.45
2	Annual Cost of Electricity Consumed	million INR	196	175	170
3	Annual Thermal Energy Consumption	million kcal	19635	20781	18257
4	Annual Cost of Thermal Energy Consumed	million INR	83	152	90
5	Specific Electrical Energy Consumption	kWh/kg Product	22.65	18.12	19.18
6	Specific Thermal Energy Consumption	Kcal/Kg Product	9760	8764	8449
7	Specific Electrical Energy Consumption	KWh/Unit production	0.035	0.032	0.033
8	Specific Thermal Energy Consumption	Kcal/Unit production	15.21	15.66	14.49
9	Production	Production in Million	1291	1327	1260
10	Production	Production in Ton	2012	2371	2161


Annual Thermal Energy Consumption

Indore



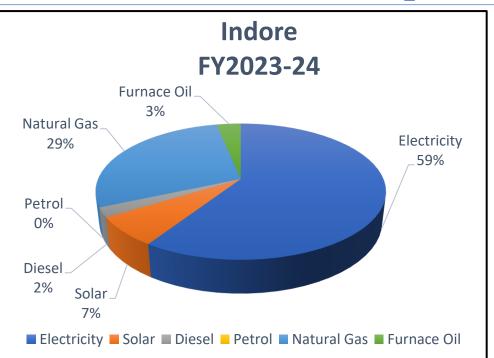
Annual Electrical Energy Consumption million kWh



Production & Energy Consumption in last 3 years

Overall energy Consumption in GJ

Production increased in subsequent financial years compared to FY 2021-22.

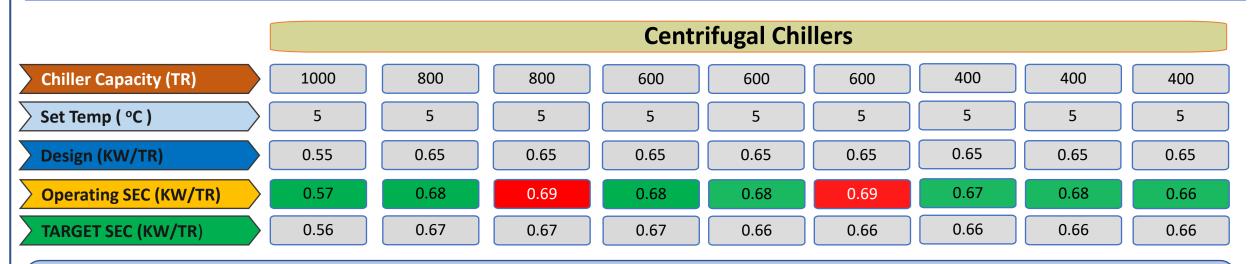

SEC reduced by ~16% in FY 2022-23 & 2023-24 compared to FY 2021-22 by implementing the Energy audit

Overall Energy Consumption reduced by 6% from FY 22-2023 to FY 23-2024

Energy Distribution

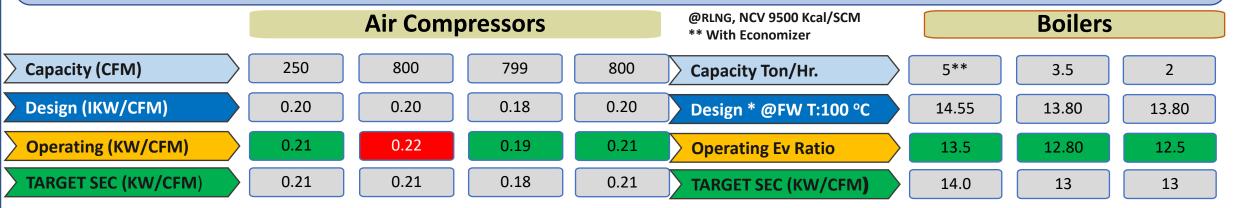
Cipla

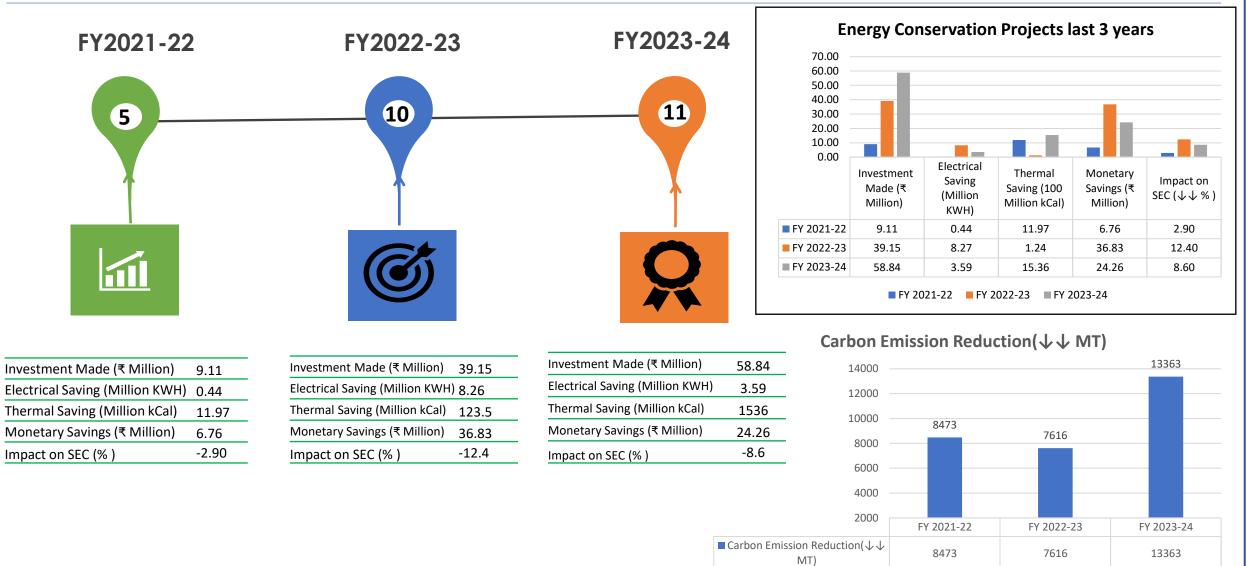
Sr NO	Energy source	UoM		Indore		
	Energy Source	0014	FY2021-22	FY2022-23	FY2023-24	
1	Electricity	GJ	164004	149791	133561	
2	Solar	GJ	0	4912	15650	
3	Wind Energy	GJ	0	0	0	
4	Diesel	GJ	5012	10384	5097	
5	Petrol	GJ	0	21	35	
6	Lpg	GJ	0	0	0	
7	NaturalGas	GJ	77065	71560	63962	
8	Biomass	GJ	0	0	0	
9	Furnace Oil	GJ	0	4902	7221	
10	LSHS	GJ	0	0	0	
11	BioDiesel	GJ	0	0	0	
12	Hydro Electricity	GJ	0	0	0	



- Electricity consumption reduced in subsequent years
- Renewable energy use increased in subsequent years
- *66% Electricity energy Consumption in FY24

* Includes solar and state electricity board


Information on Internal benchmark (Utility)


Monthly assessments of utility equipments by Engineering Team and Audits by Energy Cell, the target values are being set thereby achieving the targets with continuous monitoring and eliminating losses.

Efficiency benchmarking :- ±5% of design Efficiency

Energy Saving Projects implemented in last 3 years

8

Major Energy Saving projects implemented in last 3 years

SN	Major Project Installed in Last three Years	Savings of-	Investment (₹ Mn)	Savings (₹ Mn)	Payback (Months)
1	Installation of Roof Top Solar Power Plant	Electricity	0	4.1	0
2	Installation of Encon make energy efficient FRP light weight cooling tower fan	Electricity	0.85	0.96	11
3	Installation of Automatic Condenser Cleaning System	Electricity	1.8	1.12	20
4	Replacement of 5 Nos. of Old Higher Sized Pumps with New Suitable Size Energy Efficient Pumps (Phase-I)	Electricity	2.1	2.93	8
5	Replacement of 5 Nos. of Old Higher Sized Pumps with New Suitable Size Energy Efficient Pumps (Phase-II)	Electricity	2.0	1.12	21
6	Installation of Installation of Condensate Recovery System at Unit-III	Steam	0.8	3.0	3.4
7	Installation of Installation of Condensate Recovery System at Unit-I	Steam	0.54	1.04	6.2
8	Installation of Zero Air Loss Electronically Level Controlled Auto Drain Valve	Comp. Air	0.2	0.087	28
9	Installation of 1000 TR Magnetic Chiller at Plot-10 Utility	Electricity	3.7	0.42	\$
10	Installation of Aristi Venturi Nozzle Steam Traps	Steam	0.42	1.19	4.2
11	Installation of Louvers type Mist Cooling Tower at Plot-09	Electricity	35	6.12	68
12	BacComber System Installation	Chemical	3.56	5.65	7.5
13	Zero Liquid Discharge System at Indore Site	Water	78.5	4.5	#
14	Rainwater Recovery System	Water	0.98	0.065	#

Sustainability projects, Hence payback not applicable.

\$ Its an innovative and technology upgradation project, hence payback not applicable.

Rainwater Recovery System

<u>Purpose</u> : To utilize the rainwater from the roof top of Plot-09 Utility and Boiler House building in Cooling Tower during Rainy Season

SN	Description of Project	Total Area (m²)	Estimated Water Harvesting Potential per Year (m³)	Investment (Lakh)
1.	Rainwater recovery from roof top area of Utility Building and Boiler House of Plot-09	1752	1,240	9.81

Detail of the Project :

- The rainwater is recovered from the roof top of Utility Building and Boiler House of Plot-09.
- Flush valve is installed to drain the rainwater for first time to clear out the mud.
- GRD filters are used to filter the rainwater collected from roof tops.
- After filtration rainwater is collected in Cooling Tower sump.

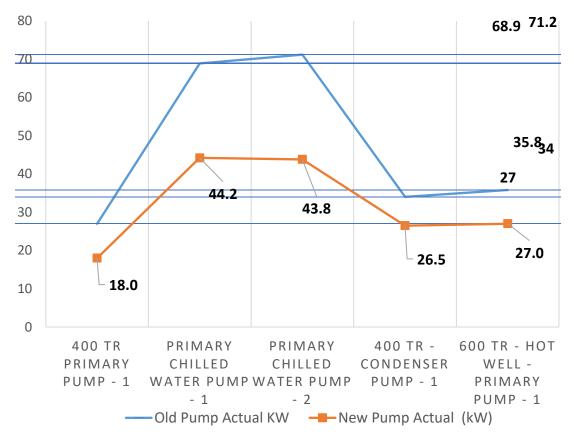
Way Forward :

- Remaining buildings of total area 36,498 m² are having rainwater recovery potential of 25,841 m³ per annum. (Based on average rainfall of Indore)
- ✤ Next planning is to install the rainwater harvesting system at Unit-II.

Filtration Cassette

GRD filter inside filtration Cassette

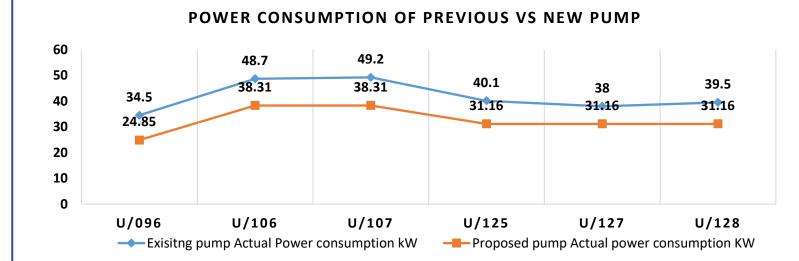
Total Saving in INR


29.25 Lac per year

Miwave Idea No.: 22412 (Submitted for IL4)

SN	Pump Name / Application / Location	Old Pump Actual KW	New Pump Actual (kW)	Annual Estimated Power Savings (kWH/Annum)	Annual Potential Monetary Savings (INR)
1	400 TR PRIMARY PUMP - 1	27	18.0	75,600	₹ 3,40,200.00
2	PRIMARY CHILLED WATER PUMP - 1	68.9	44.2	2,07,480	₹9,33,660.00
3	PRIMARY CHILLED WATER PUMP - 2	71.2	43.8	2,30,160	₹ 10,35,720.00
4	400 TR - CONDENSER PUMP - 1	34	26.5	63,000	₹ 2,83,500.00
5	600 TR - Hot Well - PRIMARY PUMP - 1	35.8	27.0	73,920	₹ 3,32,640.00

POWER CONSUMPTION OF OLD PUMP VS NEW PUMP


Investment = 21 Lac, ROI = 8 Months, Project Completion Date : 30.11.2022

Total Power saving 6.5 LKWH per year

Replacement of 6 Nos. of Old Higher Sized Pumps with New Suitable Size Energy Efficient Pumps- Phase-II

Pro	ject Completion Date : 30.06.2023	Miwave Idea No. : CS10003738	Miwave Idea No. : CS10003738				
SN	Pump Name / Application / Location	Previous pump Average power consumption in KWH/day	New pump Av consumption		% Reduction in power consumption	Saving in KWH/day	Saving in Rs per day
1	600 TR HOT WELL PRIMARY PUMP-1 (U/096)	1250	10	50	15%	190	855
2	AEROSOL SECONDARY PUMP (U/106)	830	69	0	17%	140	630
3	FFS - SECONDARY PUMP - 1 (U/107)	830	71	0	14%	120	540
4	COOLING WATER - CONDENSER PUMP - 1 (U/125)	546	46	0	16%	86	387
5	COOLING WATER - CONDENSER PUMP - 3 (U/127)	480	39	0	19%	90	405
6 COOLING WATER - CONDENSER PUMP - 4 (U/128)		346	29	0	16%	56	252
					Total	682	3069

Overall Reduction in power consumption

of pump by 16 %.

- ✤ IL4 approved.
- Project Completion Date : 30.06.2023

Installation of Intermittent Tank along with Deflasher at Unit-III

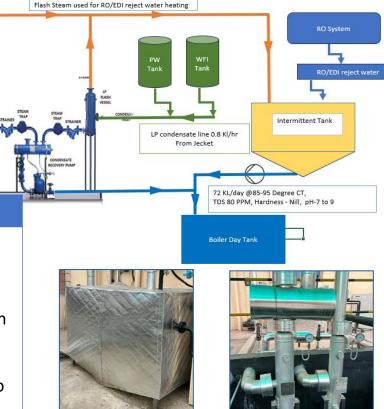
Previous Scenario	Current Scenario (After Installation of system)
Steam condensate of MCDP-I, MCDP-II, PSG-I, PSG-II, WFI storage and distribution system and PW storage & distribution system was being used as warm water makeup and fresh ambient temperature AKVN water is used as a feed in boiler.	Flash steam from deflasher is used to heat the reject water from RO / EDI unit and that heated water along with high temperature steam condensate from deflasher unit are used as feed in boiler to decrease the use of AKVN fresh water.

Deflasher Specification:

Make	Spirax Sarco
Capacity	2200 Kg/Hr.

Benefit for Condensate Recovery System:

- 1. Decrease in consumption of AKVN water for boiler feed.
- 2. Reduction in fuel consumption of boiler as the Energy required to heat the cold water is decreased by feeding the Hot condensate to the boiler.
- Decrease in the chemical dosing cost as Condensate is a distilled water and can be directly used in boiler.



Detail of the Project :

• The saving is logged in Miwave and is **Under IL4**

Approval (MI wave No. : CS10003698).

 Pressure Powered Pump Packaging Unit is installed with flash steam recovery vessel. The PPPU is a positive displacement pump unit operated by compressed air to pump hot condensate to the boiler.

Installation of Condensate Recovery System at Unit-I

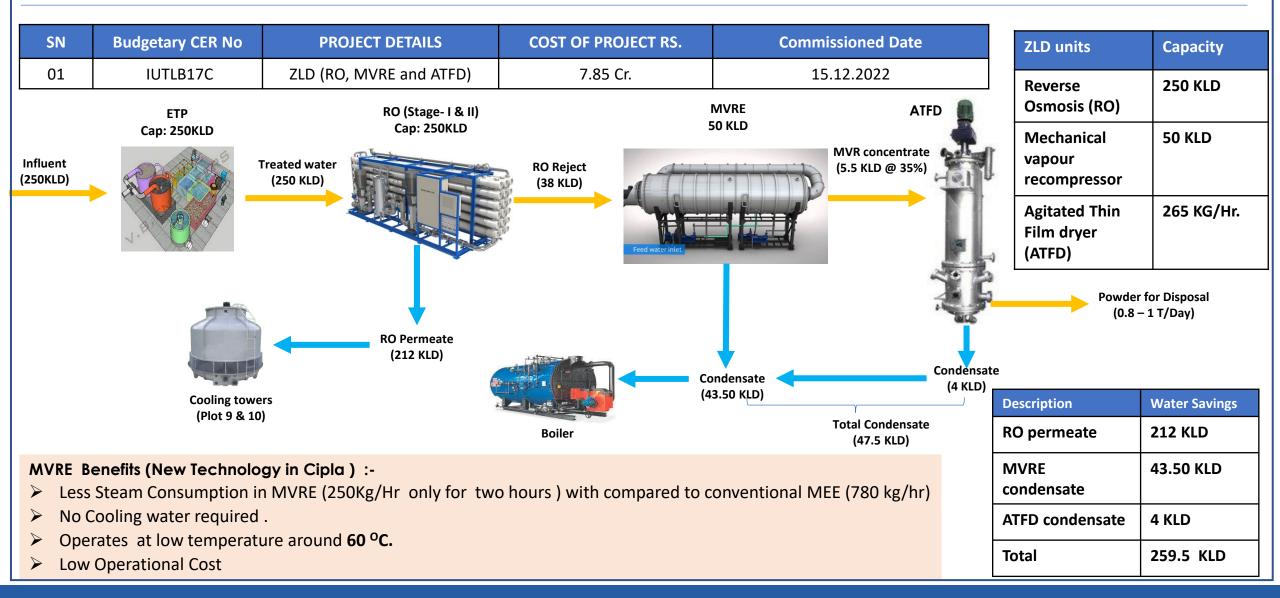
<u>Purpose</u> : To recover the high temperature condensate of Unit-I and utilize it as feed water for boiler.

SN	Description of Project	Investment	Savings in Lakh per year	ROI
1.	Installation of Pressure Powered Pump Packaged Unit for recovery of High Temperature Condensate from Unit-I MCDP, PSG and transfer the high temperature condensate to boiler.	5.4 lac	10.37 lac	6.2 Months

Detail of the Project :

- Daily Condensate water saving of 9.4 KL @85 to 90°C.
- Pressure Powered Pump Packaged Unit is installed with flash steam recovery vessel. The PPPPU is a positive displacement pump unit operated by compressed air to pump hot condensate to the boiler.

Benefits:


- Decrease in consumption of Boiler feed water.
- Reduction in Fuel consumption of boiler as the Energy required to heat the cold water is decreased by feeding the Hot condensate to the boiler.
- Decrease in the chemical dosing cost as Condensate is a distilled water and can be directly used in boiler.

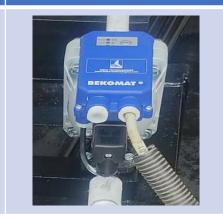
Zero Liquid Discharge Operationalized at Indore

Zero Air Loss Electronically Level Controlled Auto Drain Valve

Timer Based Solenoid Valve

- Earlier we were using timer base solenoid valve for removing the moisture from air receiver tank that was opening in every 5 minutes interval.
- Along with the moisture compressed air was also being released

to the atmosphere resulting in loss.

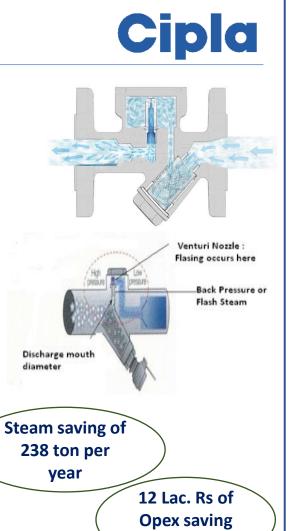

SAVING CALCULATION:

```
Specific Energy consumption of compressor = 0.2 KW/cfm (Design value)
```

Air through a 1/4 "hose = 50 cfm (arrived from moss chart)

Annual saving potential = 1980 KWh per annum (assuming 15 secs operation every 5 mins & 50% wastage)

Zero Air Loss Drain Valve



- Now we are using Zero Air loss electronically level controlled auto drain <u>valve which gets opened based on water level available in</u> valve chambers without any loss of compressed air.
- Replaced the existing time-based sensor with zero air loss auto drain valve in Air receiver. This replacement will result in the saving of 1.5 Lac/year considering the half inch size of the drain line. Total 10 valves were replaced for 10 Air Receivers installed at Cipla Indore site.

Installation of Aristi Venturi Nozzle Steam Traps - 05 Nos.

- The operation of the trap is based on the difference in density between water and steam.
- At low pressures, the density of condensate is about 1,000 times greater than that of steam. When both media
 are present, the much denser condensate will be preferentially discharged and stop the steam from passing
 through the orifice.
- The size of the orifice of each trap is determined by the specific pressure and condensate flow through that trap.
- Each trap is engineered to ensure a small plug of condensate is present at the orifice at all times. This means that no live steam can leak through the trap and it protects the orifice from any erosion by live steam.

				Estimated Benefi	t	
SN	Location	Saving of Steam (kg/h)	Saving of Steam (kg/Year)	Saving Amount of Steam (Rs/Year)	Saving of CO2 Emission (kg)	Operation Hour/Year
1	Main Steam Header In boiler House	2.54	20427	102137	2655	8040 (335*24)
2	Unit-I Main Steam line	4.16	33462	167314	4350	8040 (335*24)
3	Unit-III Main steam line	3.17	25517	127588	3317	8040 (335*24)
4	Unit-IV main steam line after PRV	9.67	69532	348162	9052	7200 (300*24)
5	Unit-IV PPPPU (Pressure Powered Pumping Packaged Unit)	12.47	89810	449050	11675	7200 (300*24)
		Total	238851	1194254	31051	

per year

CO2 emission reduction by 31 Ton

BacComber System Installation

Objective: To Eliminate chemical dosing and to align cooling tower operations as per sustainability Model.

Brief Overview of System: System consist of three components. a) Inductor Coil, b) Emitter, c) Panel with PCB card.

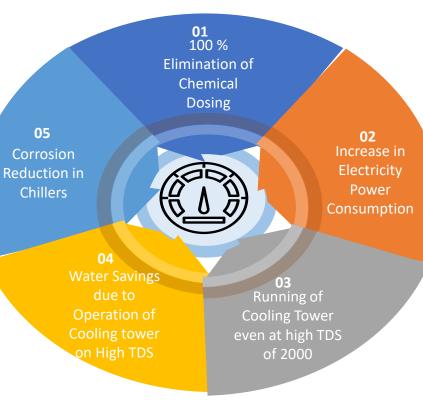
- Inductor and Emitter are installed in Cooling tower sump which converts permanent hardness into temporary hardness including microbiological treatment.
- Based on Cooling tower capacity and surface area number of pairs are decided.

Benefits:

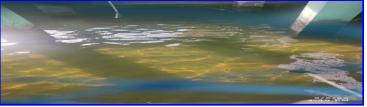
- Eliminate the chemical dosing in cooling tower.
- Water saving by Reduction in blow down water and possibility to use water for further usage.

SN	Particular	Working Principle	Remarks
1	Scale Control	 The ULF waves promotes formation of <u>Aragonite carbonates</u> instead of <u>calcite carbonates</u>. Aragonite carbonates does not stick to the condenser tubes even in high TDS water unlike calcite carbonates which are vey hard and adheres strongly to the tube walls. This method convert hard scaling into soft scaling which stays in suspended form and does not get deposited onto surface. It gets removed during blowdown of cooling tower. 	ULF Treatment ULF Treatment Cadree Condenser tubes
2	Corrosion Control	 The ULF waves promotes formation of the Iron oxide Fe3O4 which is black in colour and is called <u>Magnetite</u>. The Magnetite protects the steel surface like Aluminum oxide Al2O3 protecting Aluminum With chem 	
3	Algae Control	 The ULF waves make the bacteria incapable of multiplying. Since the life is anyway short, they die naturally. If they cannot multiply, then there is no further growth of these in the recirculating water. Hence the water in basins as large as swimming pool is so clear that you can see the bottom. This is made possible by using discs of ULF Emitters which are immersed in the cooling tower basin. They emit the ULF waves and keep the water clear of bacteria and algae, without a drop of chemical. 	er Treatment: Green color is gone

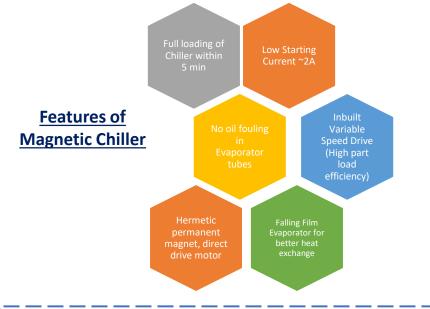
5 Major Changes Post BacComber System Implementation


Current Status of Project

- BacComber system installed on 30th August 2022.
- System performance is Good
- No chemical Dosing
- Water Color changed from Dark Green to transparent.
- Idea is locked in Miwave and IL4 level approved



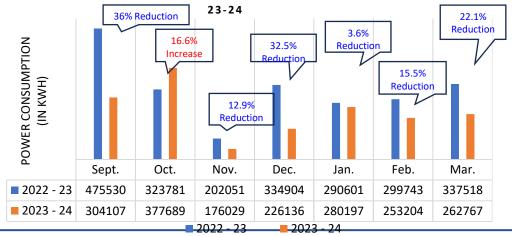
Bac Comber System is A Step Towards Sustainability Water treatment for Cooling Tower


Total estimated savings/year (Chemical cost + Rs savings due to control of hard scale) Total investment (Basic price) excluding Rs	's.	₹ 56.53	l Lac
GST	's.	₹ 35.75	i Lac
Payback Yea	ars	0.63	3

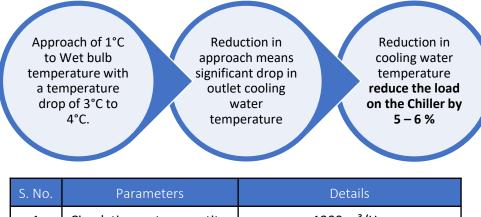
Post Bac Comber system Installation Pictures

Innovative Projects Implemented

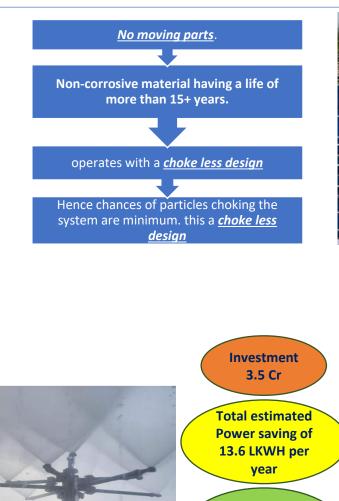
1. Installation of 1000 TR Magnetic Chiller at Plot-10 Utility



Specification of Magnetic Chiller				
Particular	Remarks			
Chiller Capacity	1000 TR			
Chiller Model	YMC ²			
Power in KW	558			
iKW/TR	0.55			
Refrigerant	R-134A			
Condenser approach	0.5 Degree Celsius			
Type of Compressor	Single stage Centrifugal compressor			

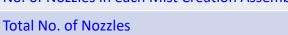

- New Magnetic Chiller is in operation from 08.09.2023.
- 7 Months data indicates the reduction of around 17 % (3.84 LKWH) in Power consumption of Chiller.
- In Oct. 2024, new Magnetic Chiller was under Operational Qualification, so there is increase in consumption.
- Design iKW/TR of Magnetic chiller is <u>0.55 as compared to 0.65</u> of earlier Nonmagnetic Chiller.

CHILLER POWER CONSUMPTION IN KWH FOR FY 22-23 VS FY



2. Installation of Louvers type Mist Cooling Tower at Plot-09

Cipla



5.110.	T di difficterio	
1	Circulation water quantity	1200 m³/Hr.
2	Actual Working Flow	1080 m³/Hr (540 m³/Hr x 2 Nos)
3	Recirculation Pump	Capacity: 1080 m ³ /Hr. Head: 35 M
4	Area	30 X 14 m
5	Approach to design WBT	1°C
6	Design WBT	26°C
7	CWT from MCS	27°C
8	Delta T	5°C
9	Fan details	Fan not required
10	Maintenance	Nil
11	Mist creation assembly	4 sets
12	Mist Creator Nozzles	48 Nos
13	Mist Nozzle Diameter	26 mm

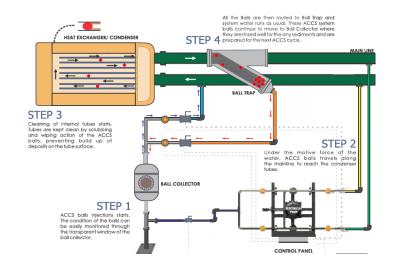
Total Estimated Saving in INR 61.23 Lac per year

48

3. Installation of Automatic Condenser Cleaning System in Chillers (Plot-09)

Cipla

Purpose :

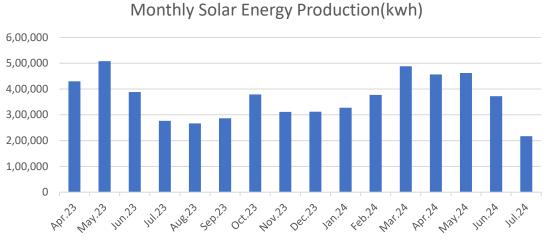

For maintaining the approach temperature of Chiller Condenser by online cleaning of the condenser tubes at Utility section (Plot-09).

Details :

- Water based cooling systems suffers from scaling which reduces heat transfer and lead to increased energy consumption.
- The ACCS cleans condenser by propelling a barrage of soft balls through the tubes under controlled water pressure.
- The friction of the passing balls, which are slightly larger in diameter than the tubes, removes accumulating residue, before it can adhere to the tube walls.

Sponge Ball	Investment	Savings in Lakh per	ROI	
		year		
 MOC - Natural Rubber mixture containing inert filler material Replacement Frequency - Quarterly 	18 lac	11.2 lac	1.6 Years	

Comparison	Manual Cleaning System	Auto Tube Cleaning System
Procedure	Chemicals are used to remove the scaling which increases downtime and increased maintenance cost.	The system cleans condenser by propelling a barrage of soft balls through the tubes under controlled water pressure
System Performance	Performance decreases between treatments	Continuous operating at optimum performance
Shutdown	Requires shutdown for cleaning	Online cleaning system, so no shutdown
Disposal Hassle	Cleaning with chemicals	No chemical. No residues
Management Overhead	High due to performance monitoring & manual cleaning	Automatic system. Effortless operation.


Benefits:

- Reduce Energy use by Optimizing Chiller Performance.
- Avoidance of charges for manual cleaning of condenser tubes.
- Reduction in system downtime for cleaning activity.
- Protect and Extend the life of the system by avoiding chemical usage.

Utilisation of Renewable Energy sources (Onsite)

Sr No	Solar pant description	Detail
1	Renewable Energy sources	Rooftop Solar
2	Year of Installation	2022-2023
3	Installed capacity (in MW)	3.11
4	Generation (in Million kWh)	4.35
5	Consumption from On-site RE (in Million kWh)	4.35
6	Rooftop panel rated efficiency	20.90%
7	% of area covered by solar panels in the roof top	62
8	Share in the overall consumption (%)	10.7
9	Tilt of Module	5°
10	Unit generated/kWp Installation (kWh/kWp)	1390
11	Performance Ratio (PR) %	83.61%
12	Capacity Utilisation Factor (CUF) %	15.88%
13	Latitude & Longitude of the plant location	(Latitude (°N)- 22.63054200630312, Longitude (°E)- 75.62240773833929)
14	Module type1 and power (Wp), efficiency (STC), no. of. modules, active PV area in sq. m, first year degradation of modules (%) and annual degradation after 1st year (%))	Make: TRINA SOLAR Model: TRINA-TSM-545DE19M(ll) Pmax: 545Wp No. of Module: 5735no's Active PV Area: 14984.775m2 Module Efficiency η m (%): 20.9%. Degradation: a. 1st year: 2%. b. Annual Deg. After 1st Year: 0.55%.

Year	Source	Installed Capacity (MW)	Capacity addition (MW) after FY2021	Total Generation (Million kWh)	Share % w.r.t to overall energy consumption
FY 2022-23	Solar	3.12	3.12	0.74775	8.72*
FY 2023-24	Solar	3.12	0	4.34702551	10.7

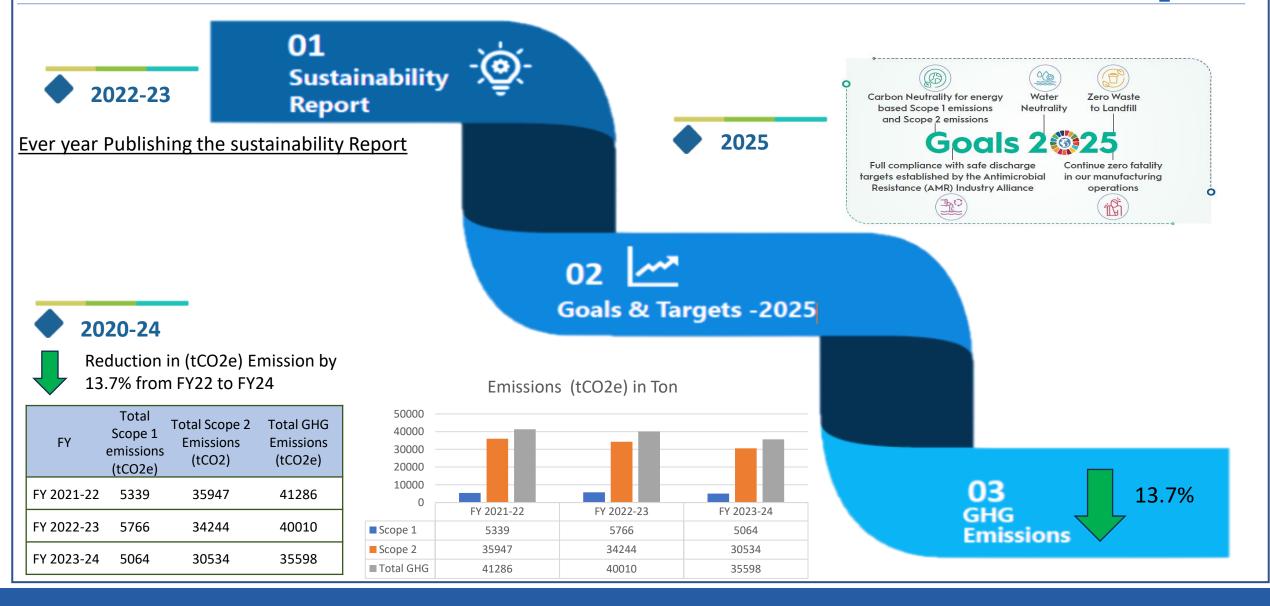
* Share % is based on solar energy consumption vs total energy consumption of that duration after solar plant installation.

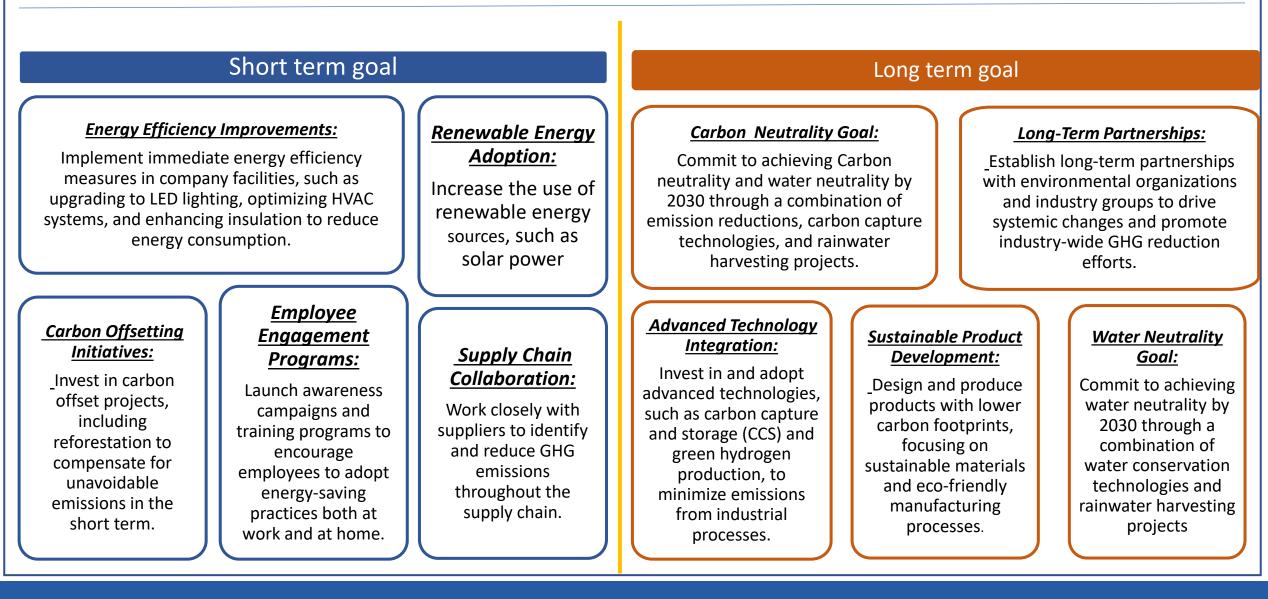
Roof Top Solar Power Plant at Cipla Indore

Solar Power Plant of total capacity **3.1 MWp** installed at roof top of Unit-I, Unit-II, Unit-II, Unit-IV, Plot-09 PCC Room, Plot-10 Utility & PCC room & Plot-09 Utility

Location	Total AC capacity (KWp)	No. of Modules	
Unit-I	1195	2193	
Unit-II	480	882	
Unit-III	520	963	
Unit-IV	656	1220	
Plot-09 PCC room	68	126	
Plot-10 utility & PCC room	90	163	
Plot-09 Utility	102	188	
Total	3111	5735	

Green Energy Generation per day 13000 KWH 47.8 LKWH per year Saving in Rs. 41.1 lac per year





Cipla

Short term and long term GHG Emission Reduction Plan

Net Zero Commitment

By 2025, we aim to achieve carbon and water neutrality and zero waste to landfill.

We make robust efforts including the increased use of renewable energy and alternative fuels, enhancement of rainwater harvesting activities and the reduction of blue water usage through wastewater management and increased recycling and co-processing of waste.

To achieve carbon neutrality, we will continue to place critical focus on the implementation of targeted initiatives for energy efficiency and an increased useof renewable power.

Invest in and adopt advanced technologies, such as carbon capture and storage (CCS) and green hydrogen production, to minimize emissions from industrial processes.

Design and produce products with lower carbon footprints, focusing on sustainable materials and eco-friendly manufacturing processes.

Carbon Neutrality for energy based Scope 1 emissions and Scope 2 emissions

O

Zero Waste to Landfill

Goals 2@25 Full compliance with safe discharge targets established by the Antimicrobial Resistance (AMR) Industry Alliance

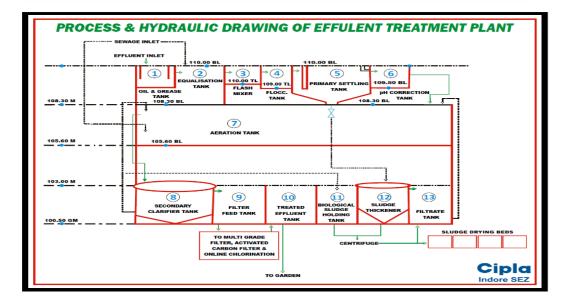
Continue zero fatality in our manufacturing operations

) (D

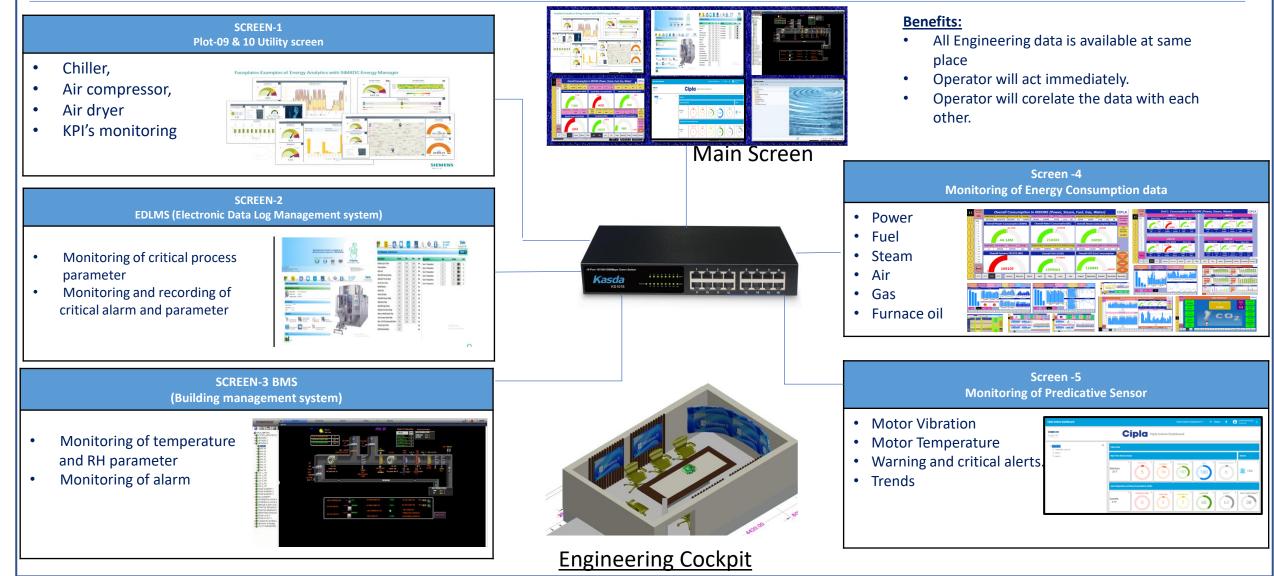
Water

Neutrality

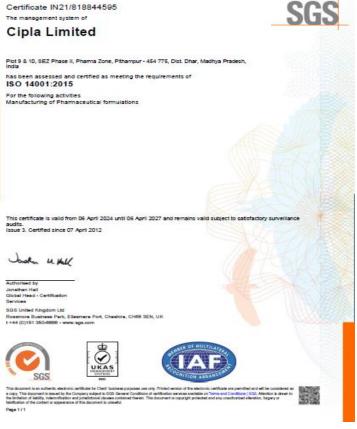
O


Environment Management System

- Full fledge ETP & STP Capacity 240 & 120 KL per Day
- Natural method known as 'PHYTORID TECHNOLOGY' is used for Sewage treatment which is efficient, low capital and O&M cost. With this Eco-friendly technology reduction in water pollutant concentration achieved up to 75 to 80%
- 150 species of 25000 large and medium plants, 200000 shrubs and 15000 sq.mt. of lawn covering 40% of plot area.
- Electromagnetic Flow Meter provided for accurate measurements.
- Treatment cost of Effluent Treatment Plant is @ Rs. 34/KL .



EnMS (Energy Management System)



Awards Certifications

✓ ISO Energy Management System ISO 50001-2018, Valid till Dec 2026

✓ ISO Environmental Management
 System ISO 14001-2015, Valid till
 April 2027

✓ ISO 45001:2018 Occupational
 Health and Safety management
 system, Valid till April 2027

Accolades

National Energy Conservation Award

Hon.Minister for Power, Coal and New & Renewable
Energy, Government of India
Mr. Piyush Goyal - handing
over the First Prize to Cipla
Indore SEZ in the Drugs & Pharmaceuticals Sector. INDORE site has been Honored with the Prestigious title of the Best EHS&S performing Site FY 2023-24

"HSE Award - Seven Star Platinu " From Safety Council

Corporate Social Responsibility

Cipla

Mobile Health Van

: HelpAge India

: 13 sites (8 Villages)

Coverage

Partner

Nov 2014 to Till Date)

ipic Foundat STATE BANK OF INDIA **Skill Development Program**

Skilling homemakers from low Total OPD : More than 36000 (Since households income to undertake Tailoring.

> No. of Participants: 40 : 2 Months Duration : Labournet Partner

MASS PLANTATION DRIVE AT CHORAL FOREST

Hole in The Wall (Computers)

HIWL Stations at Pithampur: 04 No. of Students Covered : More than 1200. Caretakers at Stations: 04

Teachers Day Celebration

Blood Donation Campaign

World Environment Day Celebration 2023 Plantation

राष्ट्रीय दवा कंपनी ने पर्यावरण का भी किया उपचार 20 हजार पेड़ भी लगाए... पालने-पोसने के लिए 35 लाख भी थमाए

from how where the rest ने तथा बनाने के साथ-साथ undares an ell'avers are डाला। सिरला मामक देश की धजहर रहा कंपनी ने चोतल रेज की लग्लई बीट में पन समिति के वाध्यय से ४० हेक्ट्रेयर जमीन पर न केवल करीब 23 जजार की दे लाए, बल्कि उन्हें चालने-घोसने और इनके खडे होने लक चन

वांधीन को पता ज्यान रुवाने के लिए ३५ ल्लाब राज्ये कर भूचराज भी जिल्ला है। काम्पनी की इस पहान को ग्रोल्साहित करने के लिग कलेकटर इलेपा राजा ने भी बोरल प्रदेशकर पीधारोपण Figure 1

लगा, भागिक उनकी संरक्ष is free 40 balter with where the set or any diffule present an man fame & . seems we sofully in second in 1.1 that it server as work D DEPUN 1 series and do this series. के फालटर, खालटार के के बाद करीब 25 जवार stretter allwaits the 300 गई मुल्यमें के बाद प्राधिल है।

पीठमपर में है सिप्ला फामां कम्प्रजी

faron und sein pa verifis arright ce कोणने है, जिसका मुख्यालय संबई में है (इसका एक प्लांट गोववगुर में भी है। झिल्ला भाषां आगवरी मुंख्य जय से anna, gen ibn, nferit, unske safte is geira is fierr रुका बनती है।

Breathefree Campaign

Thank You