PRESENTATION For CII GBC NATIONAL ENERGY AWARD FOR EXCELLENCE IN ENERGY MANAGEMENT

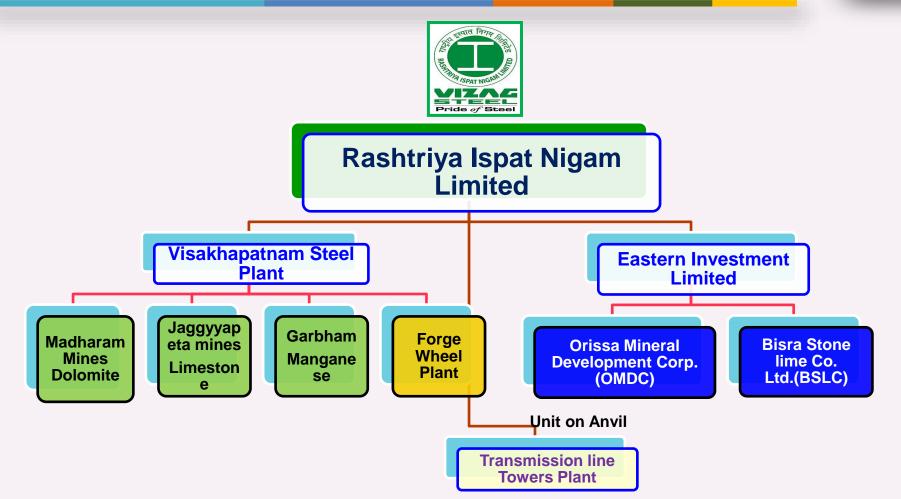
Rashtriya Ispat Nigam Limited VISAKHAPATNAM STEEL PLANT

1

TEAM MEMBERS

KV Bangar Raju, Sr. Mgr.-EMD Priyanka Rajpoot, Dy. Mgr(O)-EMD

K SUDHAKAR, GM(EMD)I/c Designated Energy Manager


CONTENTS

- Company Profile
- Process Flow
- Energy consumption overview
- >Bench marking(Internal/External)
- Encon project planned in FY 2023-24
- Energy Saving projects implemented in FY 2020-21
- Energy Saving projects implemented in FY 2021-22
- Energy Saving projects implemented in FY 2022-23
- >Innovative Projects
- >Utilization of Renewable Energy Sources
- Utilization of Waste as a fuel
- GHG Inventorisation
- **>EMS & Other requirements**
- ➢ISO 50001 certification
- >Learning from CII & other award programmes
- Net Zero commitment
- >Awards & Achievements

RINL Corporate Structure

RINL – Growth Plan

•RINL's completed Upgradation & Modernization for 7.3 MTPA of Crude Steel.

 Products includes bars,rods, wire rod and structural's and Value Added Products

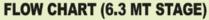
 Vision envisages growth to 20 Mtpa by 2032-33 in phases

Turnover (2022-23)-

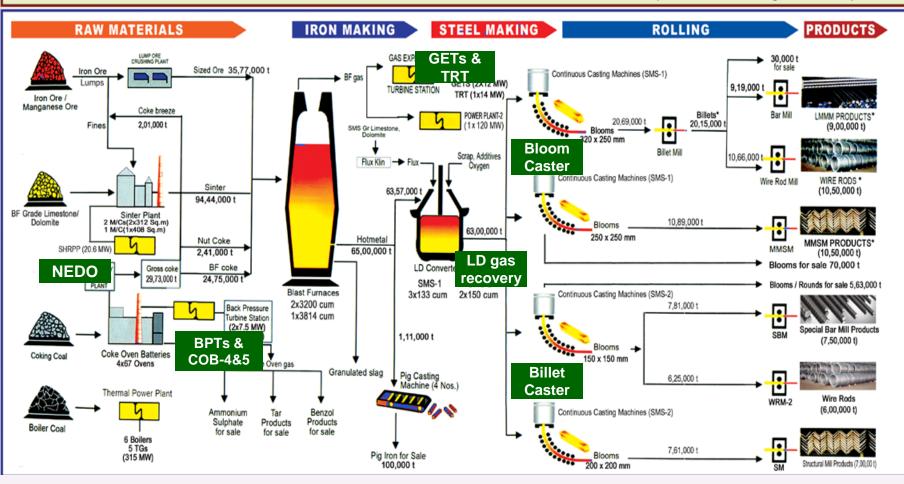
22760 INR Cr

Major Accreditations

The 1st ISP to be certified for Quality, Health & Safety and Environment

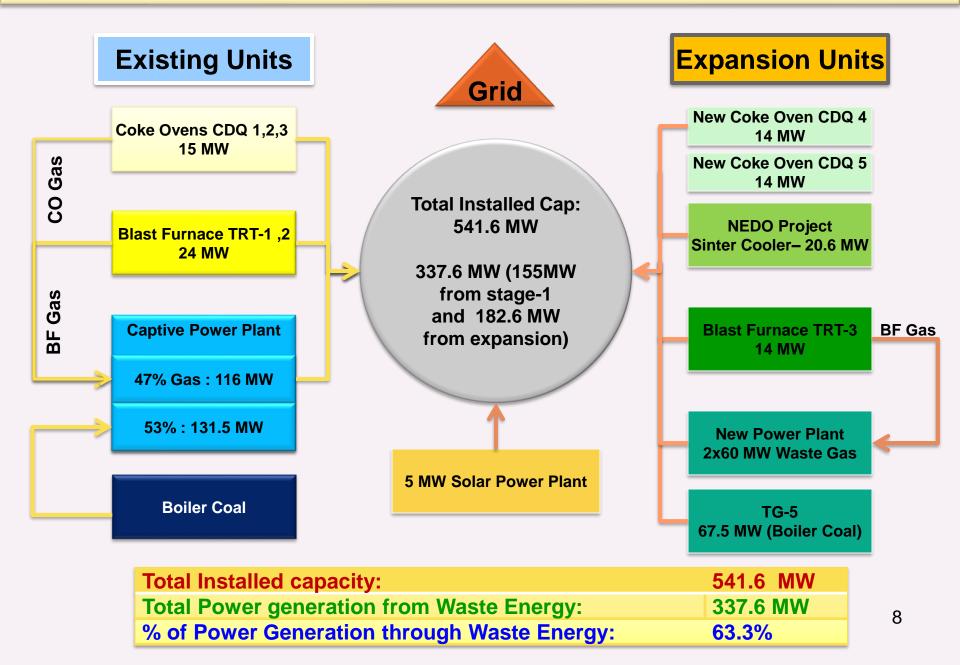

1st Steel Plant to get ISO 50001 certification for Energy Management

1st Steel PSE to sign Integrity Pact of Transparency International


CMMI Level 3 certification for IT Systems and ISO 27001 for ISMS

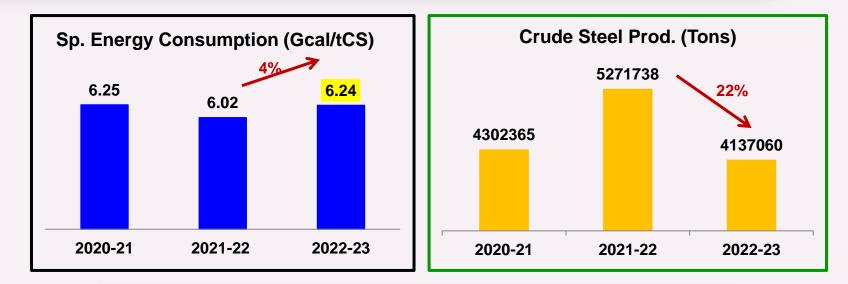
1st ISP to be 5S Certified for the whole plant

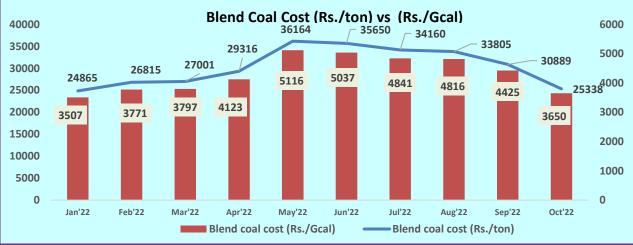
(Under Commissioning / Stablization)



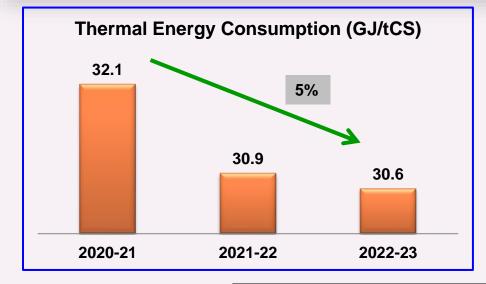
≻Sinter Plant with NEDO

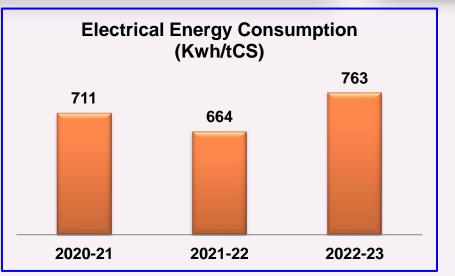
- >CO Battery with Coke Dry Quenching and Back Pressure Turbine Station.
- >BFs with Gas Expansion Turbine &Top Recovery Turbine station.
- SMS-1 & 2 with LD gas recovery plant.
- >Continuous Bloom & Billet caster.

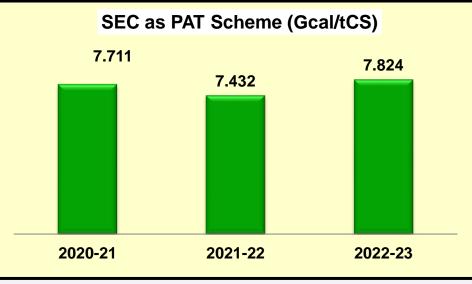

VISAKHAPATNAM STEEL PLANT


Power Generation capacity from Waste Energy (MW)

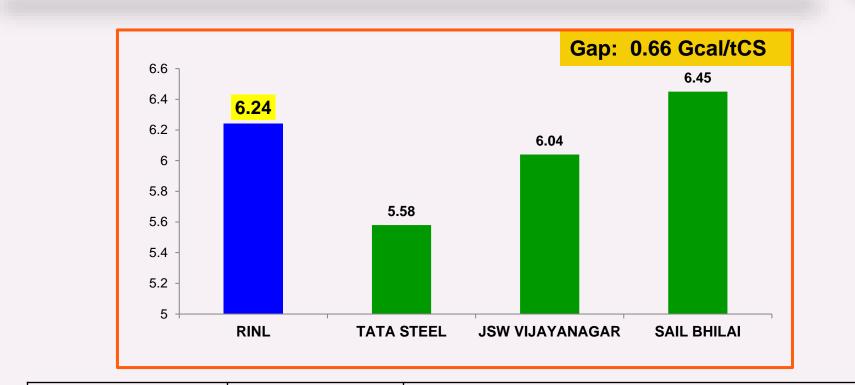
Energy Consumption Overview






Rashtriya Ispat Nigam Limited

Energy Consumption Overview



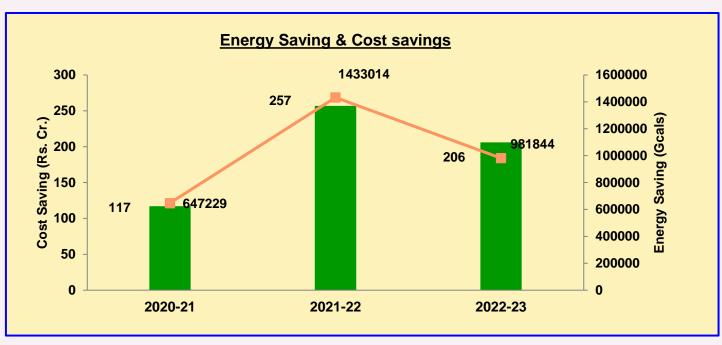
External Bench Marking of SEC(Gcal/tCS)

Energ	gy(2022-23)	GHG I	Emission	Gap :0.73 Gcal/tCS
RINL	NSC	RINL	NSC	1) Scrap usage : 200 kg/thm(As per Japanese
6.24	5.50	2.67	1.96	Industry)-RINL: 80 kg/tCS
				2) All Energy Conservation technologies
_				Coke Dry Quenching,
	Gap: 0.73 Gcal/tCS			Top Pressure Recovery Turbine,
	6.24	Gap	: 0.73 GCal/ICS	BOF Gas Recovery,
0.24				Sinter Cooler waste heat recovery
				Pulverized Coal Injection,
				BF stoves Heat Recovery,
		5.50		Billet Caster,
				Hot Charging,
				Regenerative Burners ,
	RINL	Nii	ppon Steel	Coal Moisture Control
		INI	opon Steel	Hydrogen injection in BF
				Sensible Heat recovery from BOF gas
				3) Waste Plastics Injection and tires(0.2 million
				tons- 6 kg/tCS)
				4) Petro fuel 16 lts/Tcs

Internal Bench Marking of SEC(Gcal/tCS)

Energy(2022-23) GHG Em		Emission	Gap :0.66Gcal/tCS	
RINL	Tata Steel	RINL	Tata Steel	 Coal injection > 180kg/tHM(0.25 Gcal/tCS) vs 100 kg/tHM Evel rate 526 kg/tHM vs 556 kg/tHM (0.25
6.24	5.58	2.67	2.38	 Fuel rate 526 kg/tHM vs 556 kg/tHM (0.25 Gcal/tCS). Plant Production: 10.6 Mt Crude Steel. Scrap Consumption 8.5%

Rashtriya Ispat Nigam Limited


Energy Conservation Projects planned in 2023-24

SI No	Nome of Energy Concernation Activity	Expected Energy Savings		
51 140	Name of Energy Conservation Activity	Gcal/Mkwh	Rs. Million	
1	To improve Pulverized coal injection at BF-1 from 97.6 Kg/tHM to 120.6 kg/tHM at Blast Furnace	82722	145	
2	To improve Pulverized coal injection at BF-2 from 93.8 Kg/tHM to 120.6 Kg/tHM at Blast Furnace	96389	169	
3	To improve power generation at SHRPP upto 5 MW.	43.8	427	
	Total Savings		741	

Summary of the Projects identified & Implemented

YEAR	No of Projects	Thermal Savings (Gcals)	Electrical Savings (Million KWH)	Savings in Rs.Cr	Investment In Rs Cr	Savings (GcaltCS)
2020-21	16	446733	83.4	117	2.3	0.104
2021-22	26	1073878	149.64	257.3	0.123	0.272
2022-23	21	835756	60.87	206	22	0.237

ENCON Projects with Investment (2020-21)

		Energy S	Investmen	
S.No.	Title of Project	Gcal/MKw h	Rs Millions	t (Rs Million)
1	Interconnection of LD Gas holder -1&2	99150	128	8
	Improvement in Power Generation at GETS from 3.37 MW to 6.16 MW	24.4	174	5
3	Improvement in Power Generation at SHRPP from 0.15 MW to 2.49 MW	20.5	146	10

ENCON Projects with no Investment (2020-21)

S.No.	Title of Project	Energy S Gcal/MKwh	avings in Rs Millions
1	Reduction in Sp. Power Consumption at SP-2 from 64.07 to 62.85 Kwh/tGS	2.8	20
2	Reduction in Sp. Heat Consumption at SP-1 from 27 to 26 Mcal/tGS	4080	5
3	Reduction in Sp. Power Consumption at SP-1 from 64.95 to 63.03 Kwh/tGS	7.8	56
4	Improvement in Pulverized coal injection at Blast Furnace-1 from 33.36 to 104 Kg/tHM	256953	331
5	Reduction in fuel rate at Blast Furnace-3 from 530.6 to 526.5 Kg/tHM	29537	38

ENCON Projects with no Investment (2020-21)

S.No.	Title of Project	Energy S Gcal/MKwh	
6	Reduction in Sp. Heat Consumption at SMS-2 from 45 to 35 Mcal/tCS	23544	30
7	Reduction in Sp. Power Consumption at SMS-2 from 119.26 to 113.06 Kwh/tCS	14.6	104
8	Reduction in Sp. Heat Consumption at CRMP-1 from 1380 to 1329 Mcal/tGL	13668	18
9	Reduction in Sp. Power Consumption at CRMP from 55.17 to 41.82 Kwh/tGL	7.27	52
10	Reduction in Sp.Power Consumption at WRM from 120.07 to 118.59 Kwh/tBl	1.12	8
11	Reduction in Sp. Heat Consumption at WRM-2 from 260 to 247 Mcal/tBl	5756	7
12	Reduction in Sp.Power Consumption at WRM-2 from 211.30 to 200.46 Kwh/tBl	4.8	34
13	Reduction in Sp. Heat consumption at BF from 494 Mcal/tHM to 491 Mcal/tHM	14045	18

ENCON Projects with Investment (2021-22)

S.No	Title of Project	Energy Savings in		
		Gcal/MKwh	Rs Millions	
1	Reduction in Power Consumption during Deriming at Air Seperation Unit-5	0.78	0.13	
2	Hydraulic Modfication in MMSM reheating furnace	15785	1.0	
3	Reduction in power Consumption by reducing idle running of Stelmor Blowers at Wire Rod Mill	1.06	0.10	

ENCON Projects with no Investment (2021-22)

		Energy Sa	vings in
S.No.	Title of Project	Gcal/MKwh	Rs Millions
1	Improvement in tar yield at coke oven from 3.07% to 3.09%	3884	5
2	Reduction in coke breeze consumption at Sinter Plant from 71.6 Kg/t charged sinter to 64.2 Kg/t charged Sinter.	403953	541
3	Reduction in Sp. Heat Consumption of Sinter Plant-2 from 12 Mcal/tGS to 11 Mcal/tGS.	3285	4
4	Reduction in Sp. Power Consumption of Sinter Plant-1 from 63.03 Kwh/tGS to 62.13 Kwh/tGS.	4.25	32
5	Increasing in Pulverized Coal Injection (PCI) in Blast Furnace-2 from 82.9 Kg/tHM to 100.3 Kg/tHM.	150692	202
6	Reduction in Sp. Power Consumption of Blast Furnace-3 from 50.41 Kwh/tHM to 42.27 Kwh/tHM.	10.5	80
7	Improvement in LD gas yield at SMS from 81 Ncum/tCS to 92 Ncum/tCS.	106526	143
8	Reduction in Sp. Heat Consumption of SMS-1 from 38 Mcal/tCS to 31 Mcal/tCS.	18760	25
9	Reduction in Sp. Heat Consumption of SMS-2 from 35 Mcal/tCS to 33 Mcal/tCS.	5184	7
10	Reduction in Sp. Power Consumption of SMS-2 from 113.06 Kwh /tCS to 109.70 Kwh /tCS.	8.71	66

Rashtriya Ispat Nigam Limited

ENCON Projects with no Investment (2021-22)

S.N		Energy Sa	vings in
0.	Title of Project	Gcal/MKwh	Rs Millions
11	Reduction in Sp. Power Consumption of Bar Mill from 72.91 Kwh /tIP to 67.81 Kwh /tIP.	4.33	33
12	Reduction in Sp. Heat Consumption of Special Bar Mill from 323 Mcal /tIP to 306 Mcal/tIP	7260	10
13	Reduction in Sp. Power Consumption of Special Bar Mill from 115.35 Kwh /tIP to 109.02 Kwh /tIP.	2.70	21
14	Reduction in Sp. Power Consumption of WRM-2 from 200.46 Kwh /tIP to 193.31 Kwh /tIP	3.62	28
15	Reduction in Sp. Power Consumption of MMSM from 91.67 Kwh /tIP to 76.08 Kwh /tIP.	11.19	85
16	Reduction in Sp. Heat Consumption of STM from 335 Mcal /tIP to 309 Mcal /tIP.	10730	14
17	Reduction in Sp. Power Consumption of STM from 106.79 Kwh /tIP to 96.38 Kwh /tIP.	0.01	0.08
18	Reduction in Sp. Power Consumption of CRMP from 41.82 Kwh /tGL to 35.28 Kwh /tGL.	4	32
19	Reduction in Sp. Heat Consumption of CRMP-1 from 1329 Mcal /tGL to 1220 Mcal /tGL.	23418	31
20	Reduction in Sp. Heat Consumption of CRMP-2 from 951 Mcal /tGL to 909 Mcal /tGL.	18020	24
21	Improvement in power generation in BPTS from 7.54 MW to 10.91 MW	29.52	224
22	Improvement in power generation in COB-4&5 from 7.95 MW to 15.79 MW.	68.68	521
23	Reduction in BF Gas bleeding from 10.28 % to 6.64 %.	306383	410

Pride of Steel

ENCON Projects with Investment (2022-23)

		Investment	Energy Savings in		Payback
S.No.	Title of Project	(INR Million)	Gcal/MKwh	Rs Millions	Months
1	Re-Commissioing of LD Gas Holder-2	220	42212	74	35

ENCON Projects with no Investment (2022-23)

S.No.	Title of Project	Energy Sa Gcal/MKw h	
1	Reduction in Sp. Heat Consumption of Coke Oven from 678 Mcal/tDC to 636 Mcal/tDC.	147439	258
2	Improvement in Crude Tar yield from 3.09 % to 3.10 %.	2239	4
3	Reduction in Sp. Heat Consumption of Blast Furnace from 514 Mcal/tHM to 486 Mcal/tHM.	123400	216
4	Reduction in Sp. Power Consumption of Blast Furnace from 61.06 Kwh/tHM to 59.36 Kwh/tHM.	7.49	73
5	Improvement in LD gas yield at SMS-1 from 105 Ncum/tCS to 118 Ncum/tCS.	52530	92
6	Improvement in LD gas yield at SMS-2 from 80 Ncum/tCS to 92 Ncum/tCS.	42212	74
7	Reduction in Sp. Heat Consumption of MMSM from 462 Mcal/tIB to 401 Mcal/tIB.	38073	67
8	Reduction in Sp. Heat Consumption of WRM-2 from 258 Mcal/tIB to 244 Mcal/tIB.	8035	14

ENCON Projects with no Investment (2022-23)

		Energy Sa	
S.No.	Title of Project	Gcal/MKw h	Rs Millions
9	Reduction in Sp. Power Consumption of WRM-2 from 193.3 KWH/tIB to 179.3 KWH/tIB.	8.03	78
10	Reduction in Sp. Power Consumption of SBM from 109 KWH/tIB to 94.7 KWH/tIB.	7.89	77
11	Reduction in Sp. Heat Consumption of STM from 309 Mcal/tIB to 295 Mcal/tIB.	8170	14
12	Reduction in Sp. Power Consumption of STM from 96.38 KWH/tIB to 80.14 KWH/tIB.	9.48	92
13	Reduction in Sp. Power Consumption of CRMP-1&2 from 35.28 KWH/tGL to 29.62 KWH/tGL.	0.31	3
14	Reduction in Sp. Heat Consumption of CRMP-1 from 1220 Mcal /tGL to 1200 Mcal /tGL.	5968	10
15	Improvement in Power Generation at GETs from 5.46 MW to 6.50 MW.	9.11	89
16	Improvement in Power Generation at COB-4 from 5.65 MW to 7.64 MW.	17.43	170
17	Reduction in BF Gas bleeding from 6.64% to 0.95%.	349694	612
18	Optimization of Energy Consumption in Laddle furnace of SMS-2	15785	28
19	Energy Conservation in Structural Mill	1.06	10
20	Energy Conservation by changing mode of operation by dropping arrester in BSY of SMS-1	0.06	0.6

INNOVATIVE PROJECTS IMPLEMENTED

Name of the Project	Replicability	Impact on SEC (Gcal/tCS)	Annual Savings (Rs. In lakhs)	Investmen t (Rs. In lakhs)
Optimization of Energy Consumption In Ladle Furnace (LF) Of SMS-2	Yes	0.0020	719.8	20
Energy conservation in structural mill an innovative way	Yes	0.0054	747	10.00
Energy Conservation by changing mode of operation by dropping arrester in BSY of SMS-1	Yes	0.0000	5.98	3.55

Current Concern

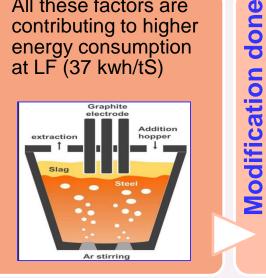
Rashtriya Ispat Nigam Limited

kwh/tls and resulted in Energy saving of 8 Mkwh.

INNOVATIVE PROJECT-1

Optimization of Energy Consumption In Ladle Furnace (LF) Of SMS-2

Ladle Furnace ensure heat homogenisation and to control super heat. Ladle Furnace capacity is 15-17 MW and energy consumed during arcing. It is basically process modification


- High Power consumption at LF.

- Low opening temperature due to low heating rate during arcing.

- High viscous slag due to low heating rate which increases arcing time.

- High Ferro alloy addition
- Grade of steel

All these factors are contributing to higher energy consumption at LF (37 kwh/tS)

These activities resulted in reduction of Power consumption from 37 kwh/tls to 35

- Controlling temp raise to <= 30 deg Č.
- Maintaining Ferro Alloy addition ≤ 1300 kg.

- Maintaining arcing time <= 25 min and starting LF treatment at tap no. 4-5.

- Addition of lime in batches and online carbon correction in medium/high carbon steel.

INNOVATIVE PROJECT-2 Energy conservation in structural mill

Structural mill produces Angles, Rounds and other products.

Rated capacity: 7,00,000 tons/annum

Power consumed in Main rolling drives, Auxiliary drives (6.1 MW) and water circuit pumps (3.7 MW).
 Major energy is consumed in main drives & Auxiliary drives.

SI. No	Before Modification	After Modification
1	Energy consumption during switching off 16 converters of 1400 kw (commutation current)	Reducing DC current (180 AMP/105 AMP)by presetting up of Main drive.
2	Low capacity loading of pumps of Billet yard (55 kw) i.e 37%	Switching off Hydraulic pumps and optimising pumping operation (23 vs. 18 Nos.)
3	Low capacity loading of Direct cooling water and scale pitpumps.	Optimisation of pumps (8 vs 4)
4	Energy conservation in lighting circuit at unmanned location	Switching off lighting and reduction of voltage by 5%.
5	Energy consumption in AHU	Optimisation of AHU during no rolling (8 vs. 21)

This modification resulted in Energy saving of 9337 KWH.

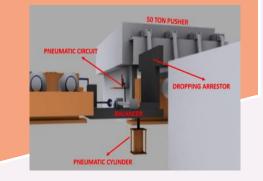
OVERVIEW -MAIN STAND MOTORS

INNOVATIVE PROJECT-3

Energy Conservation by changing mode of operation by dropping arrester in BSY of SMS-1

The main function of the dropping arrestor is to align the blooms linearly for handling by magnetic crane and driven by a 7KW motor.

Problem


Non functioning of Dropping arrestor due to loosening of plummer block bolts and misalignment of the eccentric shaft on account of high vibrations. It results in iimproper Alignment of Blooms, Roller & Shaft damage leads to delay in stacking of blooms, reduced handling of blooms (5 vs 4), more no. of crane movements (high power consumption)

Blooms Stacked in Zig-Zag Pattern due Non-Functioning of Dropping arrestors

Solution

Existing system is replaced with new pneumatic cylinder for auto operation of dropping arrestor.

Benefits

- Reduced stacking time for blooms.

- Reduction in crane movement.

- Reduction in power consumption of crane.

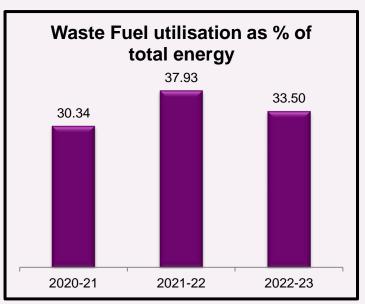
This modification resulted in energy saving of 61320 KWH and monetary savings of <u>5.98 lakhs</u> per year.

Rashtriya İspat Nigam Limited

Utilization of renewable energy sources-Solar Energy Utilization

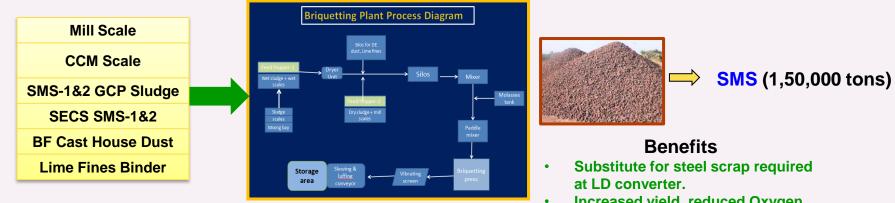
- RINL has been exempted from complying RPPO.
- RINL commissioned 5 MW Solar Power Plant Investment: Rs 36 cr
- RINL commissioned 0.5 MW
 Roof Top Solar Power Plant
 at three Building
 Investment: RESCO Model

Exploring 150-200 MW Floating Solar Power Plant at Water Reservoirs.

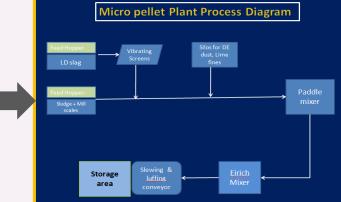

Utilization of renewable energy sources-Solar Energy Utilization

Year	Technology (Solar, Wind, Biomass etc.)	Installed capacity	Consumption (Mkwh)	% of overall electrical energy consumption
2020-21	Solar	5 MW	0.056	0.24
2021-22	Solar	5 MW	0.047	0.1
2022-23	Solar	5 MW	0	0

Utilization of Waste Material as fuel


Name of the Fuel	Quantity of waste Fuel used (MT/ year)	GCV of fuel (kcal/kg)	Heat Value (million kcal/year)	Waste Fuel as % of total energy used
Coke Dust	3361	6674	22431	0.1
LD Slag	145816	1000	145816	0.5
Met Waste	377942	500	188971	0.6
Tar sludge	3232	7100	22947	0.1
Benzol muck	242	7100	1718	0.0
ASP sludge	288	7100	2045	0.0
BF gas	7299000	842	6145758	20.3
LD gas	437000	1827	798399	2.6
Coke dust(sold)	52429	775	40632	0.1
Granulated Slag	2593767	1070	2775331	9.2
	33.5			

Waste Recycling



RINL is recycling waste by making Briquettes (0.15 MTPA) and Micro pellets (0.4 MTPA) on BOO basis.

Increased yield ,reduced Oxygen consumption, reduced lime addition & higher LD recovery

Investment: 110 Cr

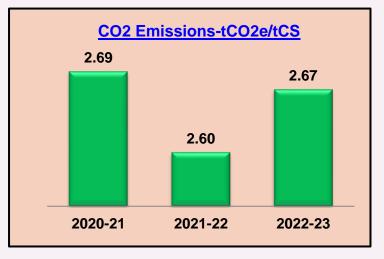
Sinter Plant (4,00,000 tons)

Benefits

- Reduced Coke Breeze consumption.
- Increase in waste utilization 75 Vs 110 kgs/tchs
- Elimination of micro fines handling
- Increase in yield

GHG Inventorisation

Emission

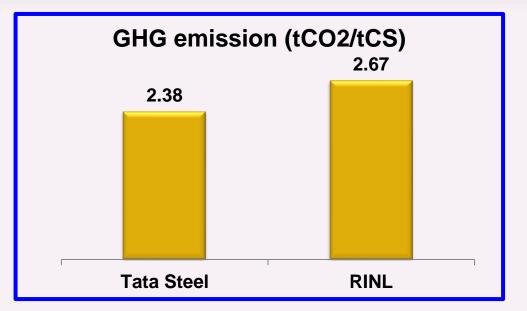

Details

Scope	Direct emiss	ions fr	om site cl	nimneys
1&1.1	determined	from	straight	carbon
	balance			

- Scope 2 Upstream emissions of electricity and steam from site.
- Scope 3 Other upstream emissions byproducts from site

Scope 1	Scope 1.1	Scope2	Scope 3	Total CO2(t CO2/TCS)
1.89	0.84	0.14	-0.19	2.67

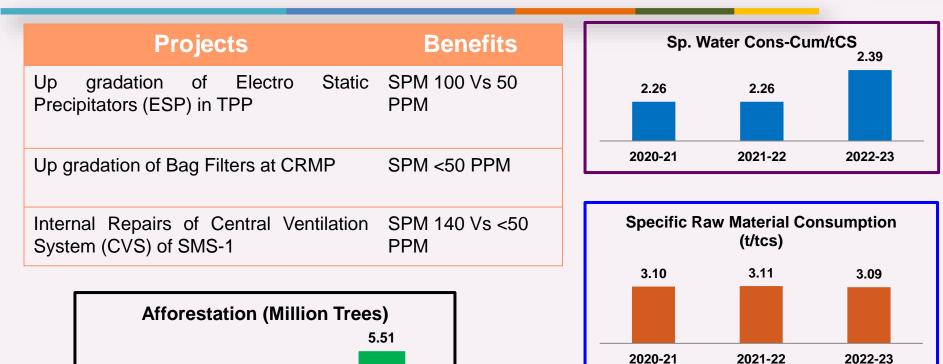
Target & Action plan for GHG reduction


Parameters	2022-23	Short Term (2030)	Long term (2047)
GHG Emissions	2.67	2.40	2.30

Action plan

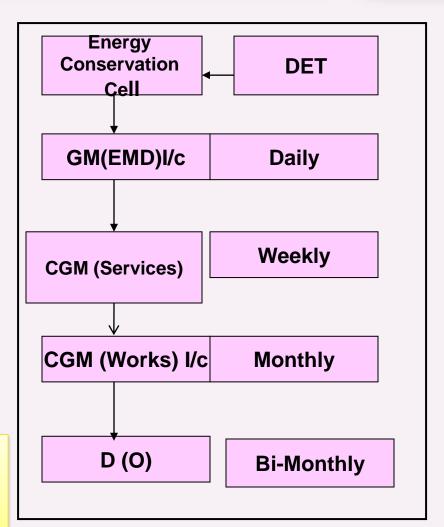
- Increasing PCI >150 Kg/tHM.
- Usage of more scrap based on availability of quality Steel Scrap
- Installation of floating Solar Power Plant at reservoirs (KBR)
- Gas Holder for BF gas & CO gas

GHG Benchmarking



GHG Er	nission	Gap :0.29 tCO2/tCS					
RINL	Tata Steel	 Coal injection > 180kg/tHM(0.12 tco2/tCS) vs 100 kg/tHM Evel rate 520 kg/tHM vs 550 kg/tHM (0.42 teo2/tCS) 					
2.67	2.38	 Fuel rate 526 kg/tHM vs 556 kg/tHM (0.12 tco2/tCS). Plant Production: 10.6 Mt Crude Steel. Scrap Consumption 8.5% (0.1 tco2/tCS) 					

Environmental Projects


EMS & Other requirements

			DAILY E	NERGY REPORT				
	Production						09	-Aug-22
Monthly	ACTUAL	For the	Shon	PARAMETER	UNFT	NORM	ON DATE	91
Plan	On date	Month						
3000	250	250	COCCP	GROSS CORE YIELD :	0	73.0	71.8	71.9
Plan/day	57	517	Bat-1	Met,Cole Yid .	•	68.2	65.3	65.3
	58 20	519 174	Bat-2 Bat-3	C. O .GAS YIELD :	NOUM/TOC	335 623	329 654	330 631
	20	472	Bat-3 Bat-4	SP. HEAT, CONS :	REAL/THE	623	4228	4163
	63	568	Bat-5	C,O, 6AS (C,V, 1	KCALMEUS	4150	4220	4103
400000	14580	141332	50	SP. HEAT. CONS :	ACAL/TSP	21	31	21
	8670	60891	SP-1(W/c-1)	SP. HEAT, CONS :	SCALUTS?	28	18	18
	5910	23111	SP-1(W/c-2)	SP. HEAT. CONS :	and other	28	50	47
	0	57330	SP-2	SP. HEAT, CONS :	CAL/TOP		0	13
	4925	43175	8F-1	SP. HEAT, CONS-1:	ACAL/THM	338	458	477
	4875	43075	BF-2	SP. HEAT, CONS-2:	ACAL/THM	338	538	590
	0	0	BF-3	SP. HEAT, CONS-3:	BCAL/THM	400	0	0
250000	9800	86250	BF(AII)	SP. HEAT, CONS (AII):	INCAL/THM	495	502	538
	0	0	Pellets/1HW(RP)	B. P. GAS, YIELD :	NOW/TOP)	3007	3208	3260
	0	0	Pellets/1946(0P1)	CORE RATE BP1:	KIR/THEA	525	485	477
	0	0	Pellets/1HW(RF2)	CORE RATE BF2 :	KONTHEM.	435	481	484
	0	0	Pellets/1946(073)	CORE RATE BF3 :	NAVTHA	420	483	0
	1281 1290	1235	Sinter/1H48(BF)	CORE RATE (AII) : Pul Cost: 8F-1	ANTHIN .	453	483	481
	1290	1259	Sinter/1148(071)	Pul Coal: 8P-1 Pul Coal: 8P-2	KR/THR	100	76	78
	12/3	1210	Sinter/H-M(8F2)	Pul Coal: BP-2 Pul Coal: BP-3	KR/THR	100	*	/3
	1.0	1.0	Sinter/1148(973) 02-861		CONTINUE.	110	76	75
	0.9	0.9		Pul Coal (All):	COVT-MA			
	0.9		O288-2	B. F. 645, C.V.	KCALANEUR	710	759	786
		0.0	028F-3 SMS-1	COAL RATE :	KIR/THEA	786	860	856
			SMS-1	HOT METAL RATE(R):	KR/TLS	1000		995
89000 160000	3360 3175	36000 34054	LS CS	SP. HEAT, CONS CONVIGAS VIELD :	ACAL/ICS	34 95	64	53
600	24	27.4	Heats	SPOXYGEN CONS :	NOW/TLS	57	46	48
000		27.4	r curs	SPARGON CONS :	NEUR/ILS	226	187.8	182.1
				SP.LPG CONS:	The OCT	0.19	0.28	0.33
			545-2	HOT METAL BATE(R)	Ke/TLS	1013	998	996
160000	6160	49896	LS	SP. HEAT, CONSCIOTAL	SCALUES	42	33	36
154161	5944	48148	CS	CONVIGAS YIELD :	NO.M.TLS	88	94	106
1032	40	36.0	Heats	Total Heats	-	34	64	63.4
				LD Gas CV	KOLMOUR	1760	1891	1830
249000				Liquid Steel	Ten	8007	9520	85896
314161				Crude Steel	Ten	7678	9119	82202
	977	8493		Sp. Heat(CRMP-2)	BCAL/TRL	940	877	868
100000	3507	28463	BILLETS	SP, HEAT, CONS :	ACAL/TDP	421	460	487
46000	2311	19400	BARS	SP. HEAT, CONS :	BCAL/TDP	20	21	21
0	0	0	WRM-1	SP. HEAT, CONS :	BCAL/TDP	248	0	0
60000	1720	15440	WRM-2	SP. HEAT, CONS :	BCAL/TDP	263	249	258
52000	1819	17599	MMSM	SP. HEAT, CONS :	BCAL/TDP	400	373	418
50000 15000	2799 1693	15010 15347	SBM	SP. HEAT, CONS :	BCAL/TDP	300	288 292	347 319
19000	116	119		SP. HEAT, CONS :	ACAL/TEP	310 749	836	865
199	31	32	TPP PP-2	SP, HEAT, CONS : SP, HEAT, CONS :	BCAL/TP	749	836	916
GETS	2.6	2.5	PP-2	Heat Rate (pp-2):	Back/Back	3071	3291	3112
TRT	0.0	0.0		Steam Rate (PP-2)	Tenters	3.93	3.97	3.75
WHR	14.4	16.1	1	POWER GENIPTS	-	25.9	11.8	13.6
Imp	173.0	170.8	1	POWER GEN TRT + GET	-	13.7	2.6	2.5
Plant Load	334.8	337.8	1	POWER GEN-NEDO		5.0	0.0	0.0
eam (PP-1)	18909	176308	LOSSES	COGAS BLEEDING:	x	0.2	0.00	0.00
Coal (PP-1)	2761	29221	1	B.P.GAS.BLEEDING:	•	2.0	0.41	0.45
	1		1	1				
eam (PP-2)	2990	26138	1	OXYGEN BLEEDING :	•	2.2	26.9	30.3
				NETROGEN BLEEDING	•	13.9	-0.6	1.9
A (C Coal)	26.12	25.79	PLANT	SP, POWER, CONS :	KNEHV/TCS	397	600	610
th (C Coal)	10.98	11.19	APP	SP. ENERGY, CONS:	e.cal/tcs	5.80	6.93	6.91
A (Coke)	0.59	0.60	TPP	OIL CONSUMPTION	KC.	167	0	0.0
sh (Coke)	15.39	14.88		On and N2	Noun/tCS	298	454	454
el Rate	-169.0 -486.77	COG YId BFG YId		WHR-CDQ WHR-TRT	-88.86			
wer Cons								

PDF created with pdfFactory Pro trial version www.pdffactory.com

-Energy Savings are quantified with respect to displacement of Boiler Coal -Electrical Savings are quantified by pegging with Electricity imported. -Savings are certified by Energy Auditors

Energy Management System ISO:50001

Features:

- □ Significant Energy Use
- Developing Energy Management programmes.
- Operational control of identified energy aspects
- Monitoring and Measurement
- Risk & Opportunities
- Internal Audit
- Management Review
- Re-certification completed for ISO: 50001, Ver 2018 in Dec'22.

	RASHTRIYA ISPAT NIGAM LIMITED VISAKHAPATNAM STEEL PLANT
	VISAKHAPATNAM - 530 031, ANDHRA PRADESH, INDIA.
rtific	Bureau Veritas Certification Holding SAS – UK Branch certifies that the Management System of the above organization has been audited and found to be in accordance with the requirements of the Management System Standard detailed below.
,ei	Standard
U U	ISO 50001:2018
3S	Scope of certification
Bureau Veritas Certification	PRODUCTION OF IRON AND STEEL, COKE AND COAL CHEMICALS, UTILITY GASES AND GENERATION OF POWER
é l	Original cycle start date: 28 December 2010
5	Recertification cycle start date: 27 December 2022
B	Subject to the continued satisfactory operation of the organization's Management System, this certificate expires on: 27 December 2025
	Certificate No. IND.22.15132/EN/U Version: 1 Issue date: 27 December 2022
	Centification body Sth Floor, 66 Presont Street, London, E1 8HQ, United Kingdom,
0	Local officer Parmax Heritas (Johnson Johnson Camito Camito Boardones) P7 Balances Next Karlov Advantiar Anas, Marchan Paulo "Or, Archani (Salo), Manchan – 400 003, India Forder califications magazing the second of this carbination and the applicability of the management system requirements may be obtained by consulting the organization. To check this cartificate validity please call & 912 2624 2000.
	, or senses, and senses, we reasing present sum () of all solar's account.

Learning from CII & other award programs

Organization	Learnings
Tata Steel	Carbon Capture from BF gas
Tata Steel	Energy recovery at PRDS
Tata Steel	Optimising cooling Tower Performance
Bhilai Steel plant	Floating Solar Power Plant at Water Reservoirs
JSL(Hisar)	O2 enrichment in Reheating furnace

Frequency of DEA and Status

Following the Energy Conservation Act-2001, RINL is conducting Detailed Energy Audit once in three years.

A. Implemented:(Accredited Energy Audit Recommendations)

Sr. No.	Energy efficiency improvement measures	Investmen t Rupees (lakhs)	Verified savings (lakhs)	Verified Energy saving	Unit
1	Efficiency improvement of exhausters in CCP	240	620	6357	MWH
2	Efficiency improvement of Mechanical, biological and chemical (MBC) blower in CCP	25	45	464	MWH
3	Replacement of rubber seal with labyrinth seal in sinter cooler of sinter machine-1	350	448	4592	MWH
4	BOF B ID fans speed reduction during non-blowing time	-	62	640	MWH
5	Effciency Improvement of ID fan of Basic Oxygen Furnace-B	25	115	1183	мwн
6	Optimize the gap between furnace and hood in ladle furnace-1 (SMS-2) to reduce the arcing time by 10%	10	143	1464	мwн
7	Optimize the gap between furnace and hood in ladle furnace-2 (SMS-2) to reduce the arcing time by 10%	10	127	1300	MWH
8	Efficiency improvement of ID fan of Basic oxygen furnace-E	25	259	2653	мwн
9	Heat loss reduction from outer surface of furnace wall in LMMM furnace by providing optimum refractories and insulation	11	9	150	Tons
10	Excess air control in LMMM furnace-1 by fine tuning of auto controller	40	384	6279	Tons
11	Heat loss reduction from outer surface of furnace wall in MMSM furnace	11	11	180	Tons
12	Heat loss reduction from outer surface of furnace wall in WRM-1 furnace	11	11	175	Tons
13	Excess air reduction in WRM-2 furnace by fine tuning of auto controller	40	46	747	Tons
14	Heat loss reduction from outer surface of SBM furnace	11	3	42	Tons
15	Stoppage of steam flow to chilled water plant-2	-	73	1194	Tons
16	Vacuum improvement in TG-4 and TG-5 of TPP	200	6319	64787	MWH
17	Vacuum improvement of TB-4 in TPP	100	202	3297	Tons
18	Reconditioning of GET-2 in Blast Furnace-2	400	294	3010	MWH
19	Overhauling of inefficient pump of pump house-2 of SMS-2	11	32	325	MWH
20	Reconditioning and servicing of inefficient pumps of pump house-18 & 18B	12	117	1202	мwн

B. Under Implementation: ((Accredited Energy Audit Recommendations)					
Sr. No.	Energy efficiency improvement measures	Investment Rupees (lakhs)	Verified savings (Rs lakhs) Estimated	Verified Energy saving(Est imated)	Unit
1	Efficiency improvement of Dedusting ID fan-2 in sinter plant-2	80	219	3,584	Tons
2	Increase of PCI injection in Blast Furnaces	-	12,525	2,04,898	Tons
3	Installation of VFD along with VFD compatible motor in combustion air fans of MMSM furnace	200	46	469	MWH
4	Installation of VFD along with VFD compatible motor in control ventilation fan of MMSM furnace	19	11	109	MWH
5	Replacement of air preheater tube with new one in WRM-1	60	336	3444	MWH
6	Optimization of CEP pressure of TG-1 in TPP	20	44	450	MWH
7	Replacement of APH in boiler 1 of TPP	1300	1756	18002	MWH
8	Reconditioning and servicing of existing pumps in pump house-4	11	121	1236	MWH

Net Zero Commitment



Parameters	2030	2047	2047 (with policy intervention)
GHG Emissions	2.40	2.30	2.00

Action plan (With policy intervention)

- Usage of Natural Gas based on availability and cost
- Usage of more scrap based on availability of quality Steel Scrap
- Installation of floating Solar Power Plant
- Installation of WHR systems like regenerative burners in reheating furnaces and Coal Moisture Control with financial assistance from National Clean Energy (NCEF)
- Usage of hydrogen in Blast furnace based on availability and cost

Roadmap for reduction of Energy Consumption & GHG emissions.

Action plan to achieve 2.40 tCO2e/tCS by 2030,

- a. Increasing Pulverized Coal Injection in Blast Furnace >150 Kg/tHM
- b. Optimizing power generation from Waste Heat Recovery system like CDQ, SHRPP & TRT
- c. Process optimization (combustion improvement, installation of VFD drives, optimizing fuel rate in BF)
- d. Exploring pellet usage in Blast Furnaces.

□ Usage of Hydrogen in place of PCI coal

□ Injection CO Gas in BF, Syngas injection into BF

Carbon Capture usage and Storage (CCU&S) technology

National Energy Conservation Week Celebration

National Energy Conservation Day Celebration

Essay competition

Awards

- RINL received TOP PERFORMER Award from Shri R RK singh, Minister for Power & Renewable Energy for obtaining highest Energy savings (1,29,907 Escerts) among all industries for PAT 2nd Cycle.
- CII National Energy Leader" award four times (2022, 2021, 2020 & 2019).
- Cll National Award for Excellence in Energy Management consecutively for six years 2022, 2021, 2020, 2019, 2018 & 2017
- National Energy Conservation Award-1st Prize from Ministry of Power-2019

Escerts Sales

Total No. Of Escerts Sold	34, 763	
Revenue generated	<u>7.54 Cr</u>	

Thank you

K Sudhakar, Email: <u>konthamsudha@vizagsteel.com</u>, Mob: 9989307213 Priyanka Rajpoot, Email: <u>prnk.oct10@vizagsteel.com</u>, Mob: 7901695216

