

PRESENTATION For CII GBC NATIONAL ENERGY AWARD FOR EXCELLENCE IN ENERGY MANAGEMENT

Rashtriya Ispat Nigam Limited VISAKHAPATNAM STEEL PLANT

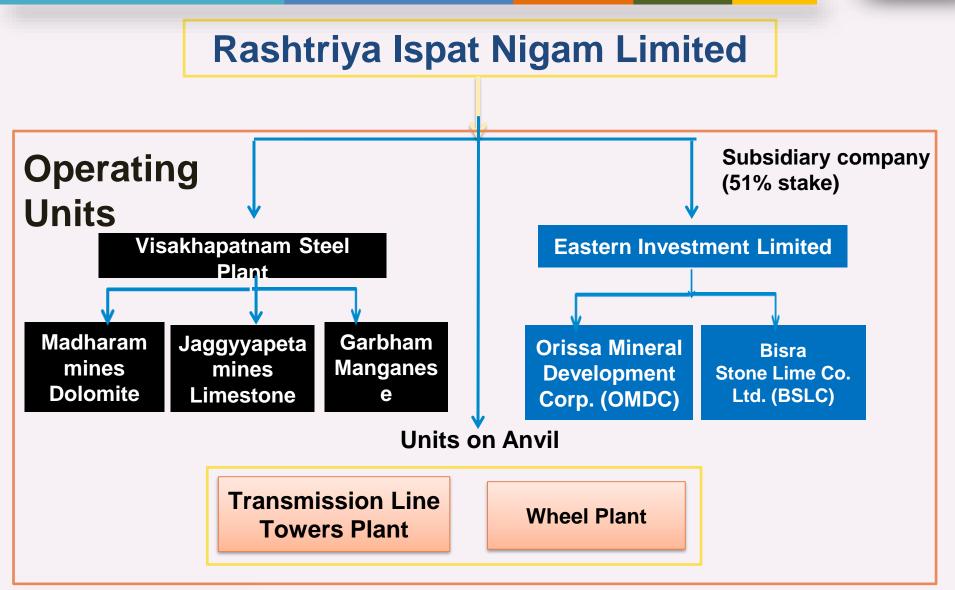
TEAM MEMBERS

Sudhanshu Kumar, Sr. Mgr.(EMD) Rishi Agarwal, Sr. Mgr.(O)-Utilities Shubham Singh, Dy. Mgr(O)-MMSM

K SUDHAKAR, GM(O)-EMD (Designated Energy Manager)

Rashtriya Ispat Nigam Limited

CONTENTS


- Company Profile
- Process Flow
- >Sp. Energy Consumption in last three years
- >Bench marking(Global and National Bench Marking)
- Energy Saving projects implemented in FY 2019-20
- Energy Saving projects implemented in FY 2020-21
- Energy Saving projects implemented in FY 2021-22
- >Innovative Projects
- >Utilization of Renewable Energy Sources
- Utilization of Waste as a fuel
- GHG Inventorisation
- >Team Work , Employee Involvement & Monitoring
- Energy Management System (ISO:50001)
- Learning from CII Award
- >Awards
- Conclusion

RINL Corporate Structure

Rashtriya Ispat Nigam Limited

RINL – Growth Plan


•RINL's completed Upgradation & Modernization for 7.3 MTPA of Crude Steel.

 Products includes bars,rods, wire rod and structural's and Value Added Products

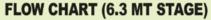
 Vision envisages growth to 20 Mtpa by 2032-33 in phases

Turnover (2021-22)-

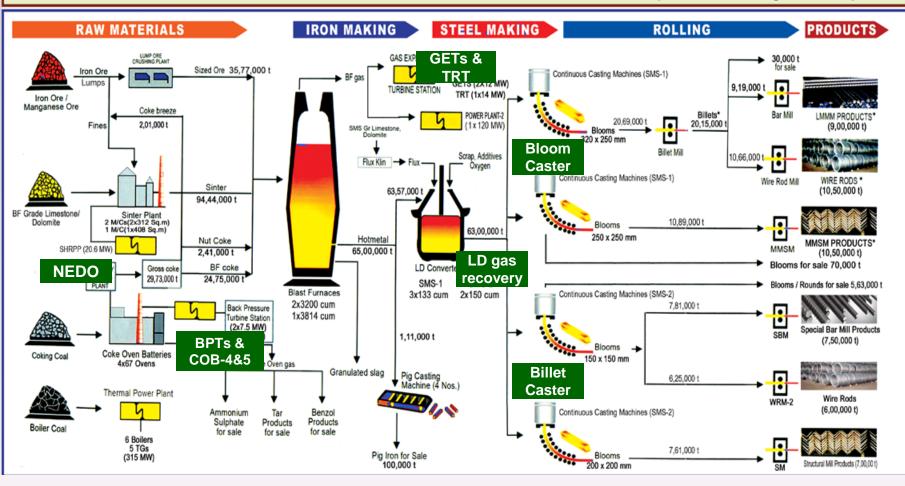
28082 INR Cr

Major Accreditations

The 1st ISP to be certified for Quality, Health & Safety and Environment


1st Steel Plant to get ISO 50001 certification for Energy Management

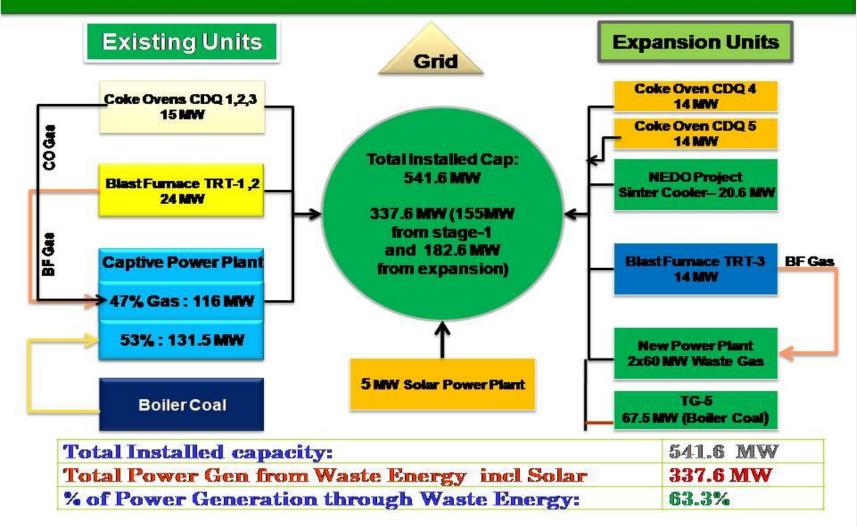
1st Steel PSE to sign Integrity Pact of Transparency International


CMMI Level 3 certification for IT Systems and ISO 27001 for ISMS

1st ISP to be 5S Certified for the whole plant

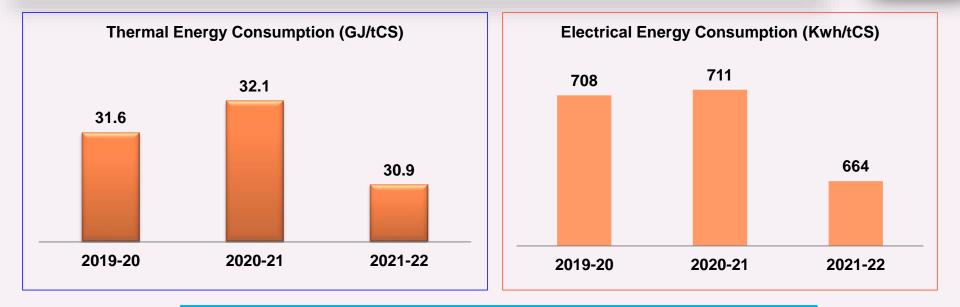
(Under Commissioning / Stablization)

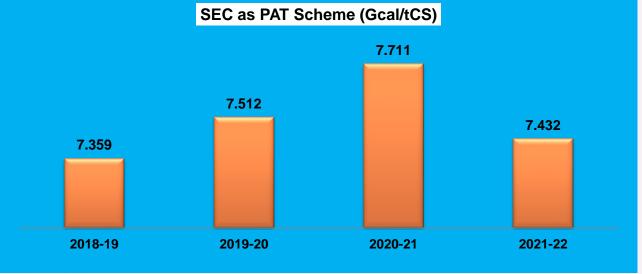
≻Sinter Plant with NEDO


- >CO Battery with Coke Dry Quenching and Back Pressure Turbine Station.
- >BFs with Gas Expansion Turbine &Top Recovery Turbine station.
- SMS-1 & 2 with LD gas recovery plant.
- >Continuous Bloom & Billet caster.

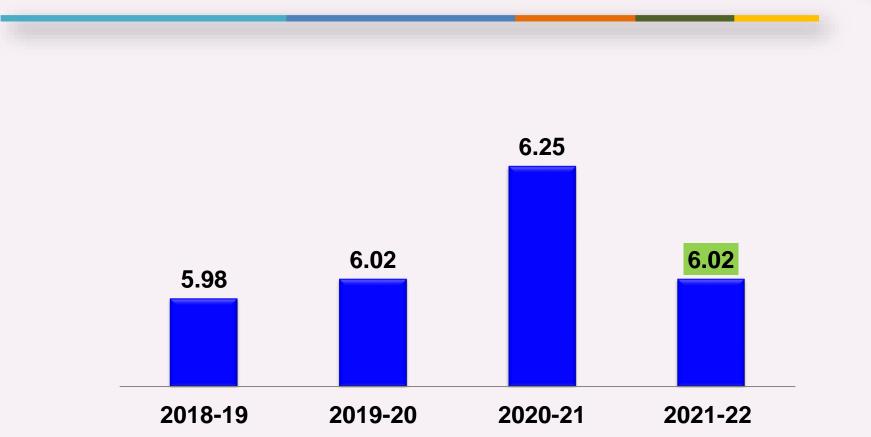
VISAKHAPATNAM STEEL PLANT

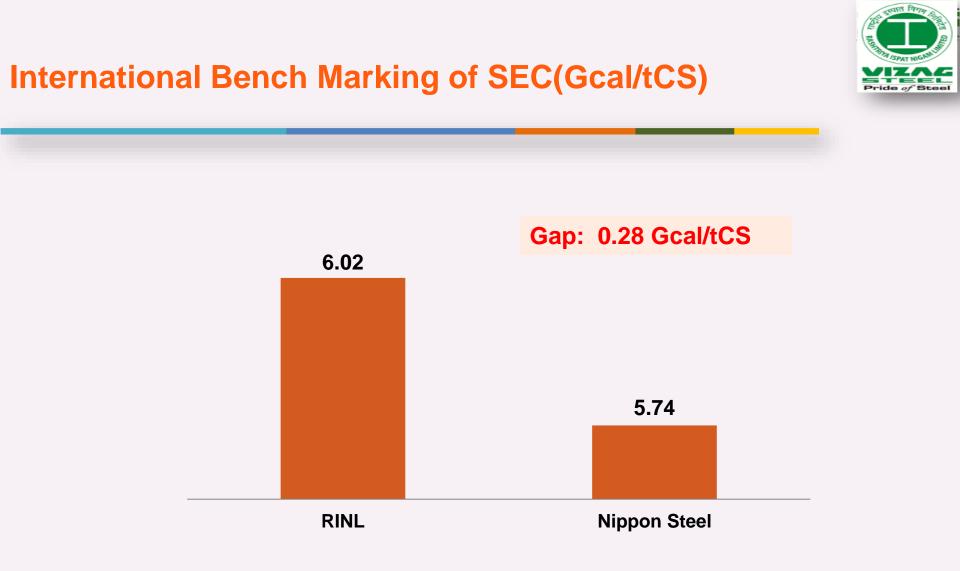
A



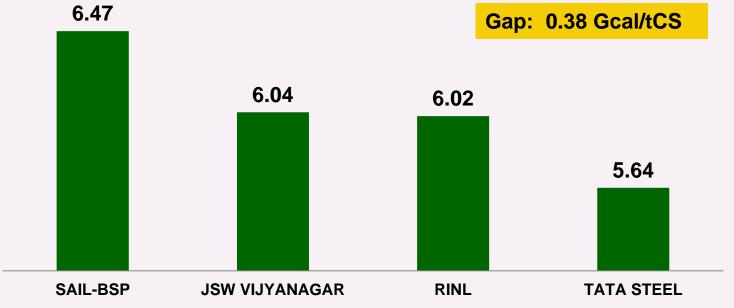

Power Generation capacity from Waste Energy (MW)

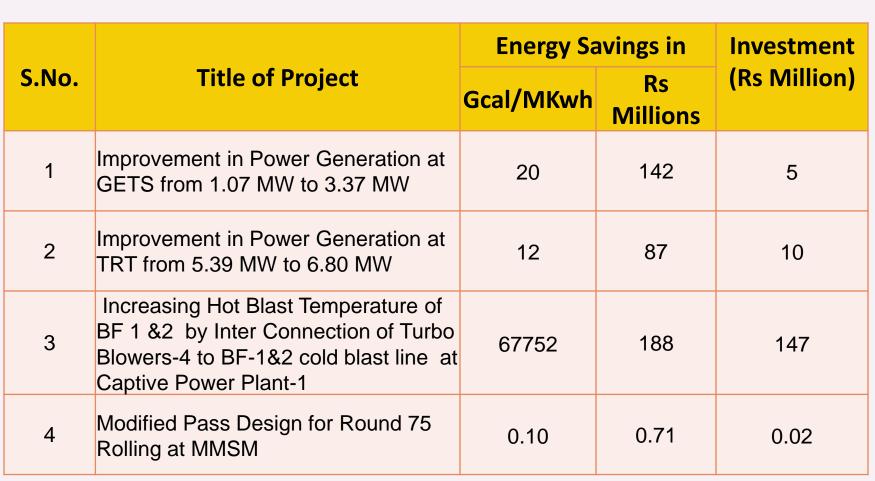
Energy Consumption Overview





Sp. Energy Consumption-Gcal/tCS




Energy	(2020-21)	GHG H	Emission	Gap :0.28 Gcal/tCS	
RINL	NSC	RINL	NSC	1) Scrap usage : 200 kg/thm(As per Japanese	
6.02	5.74	2.60	2.09	Industry)-RINL: 80 kg/tCS	
	1		1	2) All Energy Conservation technologies	
				Coke Dry Quenching,	
				Top Pressure Recovery Turbine,	
				BOF Gas Recovery,	
				Sinter Cooler waste heat recovery	
				Pulverized Coal Injection,	
				BF stoves Heat Recovery,	
				Billet Caster,	
				Hot Charging,	
				Regenerative Burners,	
				Coal Moisture Control	
				Sensible Heat recovery from BOF gas	
				3) Waste Plastics Injection and tires(0.2 million tons-	
				6 kg/tCS)	
				4) Petro fuel 16 lts/Tcs	

Energy	Energy(2020-21) GHG Emission		Emission	Gap :0.38Gcal/tCS		
RINL	Tata Steel	RINL	Tata Steel	1)Coal Injection of >180 kg/tHM (0.250Gcal/tCS) Vs 100 kg/tCS		
6.02	5.64	2.60	2.43	2) Plant Production: 10 Mt Crude Steel.		

Energy Saving projects implemented in last three years with investment (2019-20)

Energy Saving projects implemented (2019-20)

S.No.	Title of Project	Energy Savings in	
5.110.	Title of Project	Gcal/MKwh	Rs Millions
1	Improvement in Pulverized coal injection at BF-2 from 27.8 to 107.2 Kg/tHM at Blast Furnace	223830	308
2	Improvement in LD gas yield at SMS-1 from 104 to 109 Ncum/tCS	22457	31
3	Reduction in Coke Breeze consumption at SP-1 from 54.8 kg/tGS to 53.5 Kg/tGS	38888	54
4	Reduction in BF Fuel rate from 541.6 kg/tHM to 538.9 kg/tHM	95237	131
5	Enhanced argon production by increasing argon recovery from Air Seperation Unit-5	0.16	70

ENCON Projects with Investment (2020-21)

		Enei	Investment		
S.No.	Title of Project		Unit	Rs Millions	(Rs Million)
1	Interconnection of LD Gas holder -1&2	99150	Gcal	128	8
2	Improvement in Power Generation at GETS from 3.37 MW to 6.16 MW	24.4	Mkwh	174	5
3	Improvement in Power Generation at SHRPP from 0.15 MW to 2.49 MW	20.5	Mkwh	146	10
4	Installation of 0.5MW roof top solar power plant	0.14	Mkwh	1.01	RESCO model

ENCON Projects with no Investment (2020-21)

S.No.	Title of Droiget	Energy Savings in		
5.INO.	Title of Project	Gcal/MKwh	Rs Millions	
1	Reduction in Sp. Power Consumption at SP-2 from 64.07 to 62.85 Kwh/tGS	2.8	20	
2	Reduction in Sp. Heat Consumption at SP- 1 from 27 to 26 Mcal/tGS		5	
3	Reduction in Sp. Power Consumption at SP-1 from 64.95 to 63.03 Kwh/tGS	7.8	56	
4	Improvement in Pulverized coal injection at Blast Furnace-1 from 33.36 to 104 256953 Kg/tHM		331	
5	Reduction in fuel rate at Blast Furnace-3 from 530.6 to 526.5 Kg/tHM	29537	38	

ENCON Projects with no Investment (2020-21)

S No.	Title of Droject	Energy Savings in		
S.No.	Title of Project	Gcal/MKwh	Rs Millions	
	Reduction in Sp. Heat Consumption at SMS-2 from 45 to 35 Mcal/tCS	23544	30	
	Reduction in Sp. Power Consumption at SMS-2 from 119.26 to 113.06 Kwh/tCS	14.6	104	
	Reduction in Sp. Heat Consumption at CRMP-1 from 1380 to 1329 Mcal/tGL	13668	18	
	Reduction in Sp. Power Consumption at CRMP from 55.17 to 41.82 Kwh/tGL	7.27	52	
10	Reduction in Sp.Power Consumption at WRM from 120.07 to 118.59 Kwh/tBl	1.12	8	

ENCON Projects with no Investment (2020-21)

S.No.	Title of Project	Energy Savings in		
5.100.	The of Project	Gcal/MKwh	Rs Millions	
11	Reduction in Sp. Heat Consumption at WRM-2 from 260 to 247 Mcal/tBl	5756	7	
12	Reduction in Sp.Power Consumption at WRM-2 from 211.30 to 200.46 Kwh/tBl	4.8	34	
13	Reduction in Sp. Heat consumption at BF from 494 Mcal/tHM to 491 Mcal/tHM	14045	18	

ENCON Projects with Investment (2021-22)

S.No.	Title of Project	Energy Savings in		
5.100.	The of Project	Gcal/MKwh	Rs Millions	
	Reduction in Power Consumption during Deriming at Air Seperation Unit-5	0.78	0.13	
-	Hydraulic Modfication in MMSM reheating furnace	15785	1.0	
3	Reduction in power Consumption by reducing idle running of Stelmor Blowers at Wire Rod Mill	1.06	0.10	

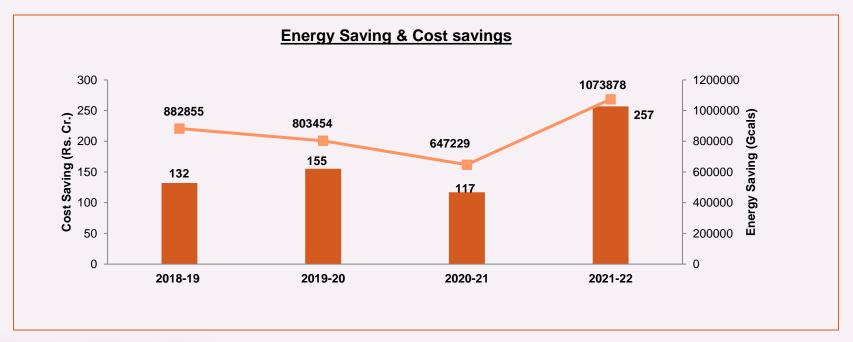
ENCON Projects with no Investment (2021-22)

S No	Title of Droject	Energy Sa	vings in
S.No.	Title of Project	Gcal/MKwh	Rs Millions
1	Improvement in tar yield at coke oven from 3.07% to 3.09%	3884	5
2	Reduction in coke breeze consumption at Sinter Plant from 71.6 Kg/t charged sinter to 64.2 Kg/t charged Sinter.		541
3	Reduction in Sp. Heat Consumption of Sinter Plant-2 from 12 Mcal/tGS to 11 Mcal/tGS.	3285	4
4	Reduction in Sp. Power Consumption of Sinter Plant-1 from 63.03 Kwh/tGS to 62.13 Kwh/tGS.		32
5	Increasing in Pulverized Coal Injection (PCI) in Blast Furnace-2 from 82.9 Kg/tHM to 100.3 Kg/tHM.	150692	202
6	Reduction in Sp. Power Consumption of Blast Furnace- 3 from 50.41 Kwh/tHM to 42.27 Kwh/tHM.	10.5	80
7	Improvement in LD gas yield at SMS from 81 Ncum/tCS to 92 Ncum/tCS.	106526	143
8	Reduction in Sp. Heat Consumption of SMS-1 from 38 Mcal/tCS to 31 Mcal/tCS.		25
9	Reduction in Sp. Heat Consumption of SMS-2 from 35 Mcal/tCS to 33 Mcal/tCS.	5184	7

ENCON Projects with no Investment (2021-22)

S.No.	Title of Project	Energy Sa	vings in
5.INO.	The of Project	Gcal/MKwh	Rs Millions
10	Reduction in Sp. Power Consumption of SMS-2 from 113.06 Kwh /tCS to 109.70 Kwh /tCS.	8.71	66
11	Reduction in Sp. Power Consumption of Bar Mill from 72.91 Kwh /tIP to 67.81 Kwh /tIP.	4.33	33
12	Reduction in Sp. Heat Consumption of Special Bar Mill from 323 Mcal /tIP to 306 Mcal/tIP 7260		10
13	Reduction in Sp. Power Consumption of Special Bar Mill from 115.35 Kwh /tIP to 109.02 Kwh /tIP.	2.70	21
14	Reduction in Sp. Power Consumption of WRM-2 from 200.46 Kwh /tIP to 193.31 Kwh /tIP		
15	Reduction in Sp. Power Consumption of MMSM from 91.67 Kwh /tIP to 76.08 Kwh /tIP.	11.19	85
16	Reduction in Sp. Heat Consumption of STM from 335 Mcal /tIP to 309 Mcal /tIP.	Acal /tIP. 10730 er Consumption of STM from 0.01	
17	Reduction in Sp. Power Consumption of STM from 106.79 Kwh /tIP to 96.38 Kwh /tIP.		
18	Reduction in Sp. Power Consumption of CRMP from 41.82 Kwh /tGL to 35.28 Kwh /tGL.	4	32

ENCON Projects with no Investment (2021-22)



S.No.	Title of Project	Energy Sa	vings in
5.100.	The of Project	Gcal/MKwh	Rs Millions
19	Reduction in Sp. Heat Consumption of CRMP- 1 from 1329 Mcal /tGL to 1220 Mcal /tGL.	23418	31
20	Reduction in Sp. Heat Consumption of CRMP-2 from 951 Mcal /tGL to 909 Mcal /tGL.	18020	24
21	Improvement in power generation in BPTS from 29.52 7.54 MW to 10.91 MW		224
22	Improvement in power generation in COB-4&5 from 7.95 MW to 15.79 MW.	68.68	521
23	Reduction in BF Gas bleeding from 10.28 % to 6.64 %.	306383	410

Summary of the Projects identified & Implemented

YEAR	No of Projects	Thermal Savings (Gcals)	Electrical Savings (Million KWH)	Saving s in Rs.Cr	Investm ent In Rs Cr	Savings (GcaltCS)
2019-20	25	621918	75.64	155.3	16.2	0.17
2020-21	17	446733	83.54	117	2.3	0.104
2021-22	26	1073878	149.64	257.3	0.123	0.272

INNOVATIVE PROJECTS IMPLEMENTED

Name of the Project	Replicab ility	Impact on SEC (Gcal/tCS)	Annual Savings (Rs. In lakhs)	Investme nt (Rs. In lakhs)
Reduction in Power Consumption during Deriming at Air Separation Unit-5	Yes	0.0004	219	1.3
Hydraulic Modification in MMSM reheating furnace	Yes	0.003	211	10
Reduction in power Consumption by reducing idle running of Stelmor Blowers at Wire Rod Mill	Yes	0.001	162	1.0

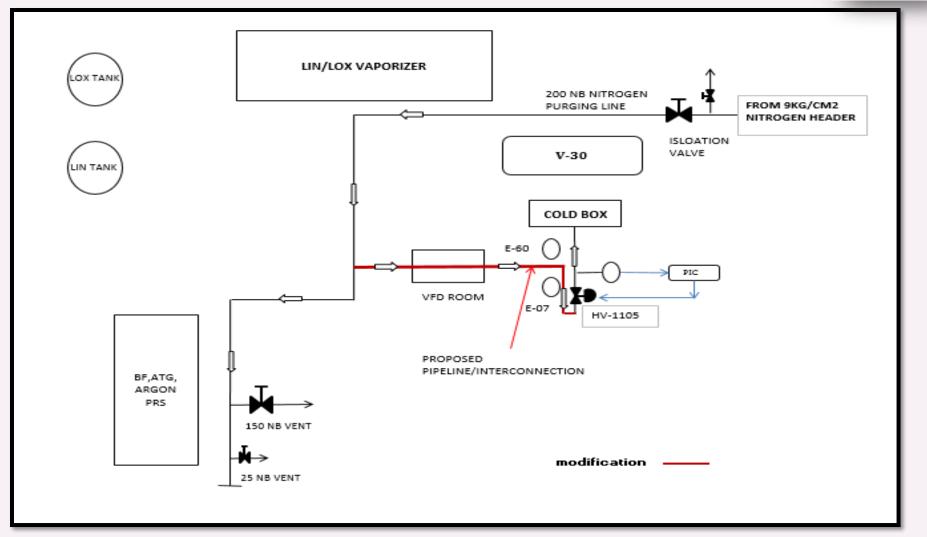
Reduction in Power Consumption during Deriming at Air Separation Unit-5

Air Separation Plant produces Oxygen, Nitrogen and Argon in gas and liquid form by cryogenic-distillation process.

ASU-5 consists of Feed air Compressors (1 No.s), Nitrogen compressors (2 No.s), Expansion Turbines (2 No.s), Cryogenic pumps etc.

Main consumers of ASU-5 are Blast furnace, Steel melt shop, Coke Oven, Mills etc.

Reduction in Power Consumption during Deriming at Air Separation Unit-5


- Cryogenic systems are warmed with hot, dry and purified air to remove moisture and hydrocarbons.
- Prior to the the warm (more than 48 hours old) start up of ASU-5, deriming has to be done to ensure the unit is free of moisture and hydrcoarbons.
- Demand of deriming air is very low (5000 Nm3/hr to 8000 Nm3/hr) for which Air compressor is running at low load.
- Air compressor along with auxiliaries consumes 8.7 MWH of energy to provide deriming air.

MODIFICATION:

- 1. After a lot of brainstorming and discussions, It is planned to use nitrogen in place of air for deriming process as surplus nitrogenis available in network.
- 2. A tapping from existing 9 KScg Nitrogen purge header is taken and connected to the upstream of deriming inlet valve.
- 3. Now whenever deriming is required to be done, Nitrogen isolation valve is opened and nitrogen is used for deriming.

Schematic layout of modification

BENIFITS

S.No	Parameters	Unit	Before innovation	After innovation
1	Energy Consumption for deriming annually (MWH)	мwн	783	180
3	Cost of deriming annually in lakhs	Lakhs	216.85	14.04
4	Unit downtime annually in hours	Hours	168	132

Savings: 2.03 Crores per year

Hydraulic Modification in MMSM reheating furnace

FURNACE DETAILS

- NUMBER OF FURNACES
- CAPACITY EACH FURNACE
- NUMBER OF ZONES
- HEATING ZONES
- SOAKING ZONES
- DIMENSIONS
- EFFECTIVE DIMENSIONS
- EFFECTIVE AREA

2 130 TONS/HR 5 1,2,3 4,5 21.7X14.51Mtrs 20X12 Mtrs 240 M2

Need of Modification

- Furnace heating capacity is 130t/hr (46 blooms/hr)
- During the single furnace operation not able to roll more than 130 Tons/hr even mills rolling capacity is 260 Tons/hr.
- If discharging rate is more than 130 Tons/hr (46 blooms/hr), blooms are not getting fully soaked.
- Improper soaking results in high power consumption, cobbles and fast wear out of rolls.

Modification

After discussion, the following options emerged,

Option	Feasible/not feasible
Increase the calorific value of mixed gas	not feasible (require more coke oven gas)
Oxygen enrichment	not feasible
Decreasing space between blooms	Feasible by decreasing the hydraulic stroke from 400mm to 380 mm

BENEFITS

- Increased flue gas resistance due to higher retention time.
- Increase in cycles from 50 to 53 resulted in blooms retention time by 10 minutes.
- Furnace holding capacity increased by 10 blooms.
- 56 blooms discharged in one hour with proper soaking in structural rolling
- Decrease in load in stand -2
- All problems associated with improper soaking in mill eliminated.

65.00	1_SOFT_ST2LOAD_HSP -2022 19:58:16
75.00 50.00 NA NA N	1_SOFT_ST2LOAD_HSP -2022 19:58:16
	2022 19:58:16 ↔
No No No NA	€ ZLOAD_EU
NA N	
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	
11-08-2022 19:00:0000 🗄 Т Нешт — 🗸 📷 🕊 4 → ээ н 🖌 🔍 🔍 🔍 🔍 🔍 🔍 🖓 🖽 🛱 🦄 🕅	
e Object Tree Comment Cursor1 Minimum Maximum Average Std Deviation Cursor1 Time	Ø1-08-2022 20:00:000
↓ 10.00 - 100.00 F1_F1_AIR_FLOW_TOT_CUM FURNACE1 AIR TOTAL FLOW 57,967.72 57,921.98 57,968.19 57,944.37 14.65 01-08-2022 19:58 16 ↓ 10.00 - 100.00 F1_F1_GAS_FLOW_TOT_CUM FURNACE1 GAS TOTAL FLOW 19,425.23 19,406.36 19,425.27 19,415.82 5,12 0,10,00,2022 19:58 16	
Open Concert PLURACE1 GAS TOTAL FLOW 19,425.23 19,406.36 19,425.27 19,415.82 6.12 01-08-2022 19:58:16 Open Concert FURNACE1 STAND 2 LOAD % 32.27 1.92 36.36 16,72 13.43 01-08-2022 19:58:16 ered by Dual Camera MMSM STAND 2 LOAD 65.00 65.00 65.00 0.00 01-08-2022 19:58:16	

Benefits

Parameters	Unit	Before Modification	After Modification
Blooms discharged	Nos.	46	56
Sp. Heat	Mcal/ton	248	226

Savings: 2.11 Crores per year

INNOVATIVE PROJECT-3

Reducing idle running of Stelmor Blowers at Wire Rod Mill-2

Brief of Activity:

- In WRM-2 stelmor area 10 Blowers are present in each line to cool down the coil and achieve desired metallurgical properties.
- These blowers are controlled by a variable frequency drive
- The blowers motor data per strand is as follows: 200 KW -2 no's 315kW -8 No's
- During the mill down time in case of breakdown or cobble ,it is observed that operator were not switching off the drives for a long time. this idle running is causing huge wastage of power

INNOVATIVE PROJECT-3

INNOVATION

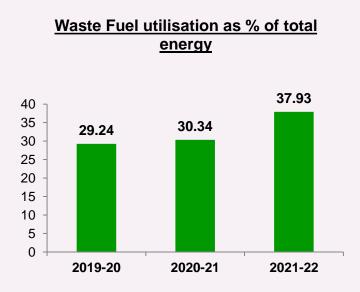
- The drives Start/Stop control is provided with PLC system
- A logic with interlocks is incorporated in the PLC such that when the upstream equipment (rolling Stands) is off for more than 10 min , the stelmor drives were commanded switched off.

INNOVATIVE PROJECT-3

BENEFITS

Parameters	Unit	Before Modification	After Modification
Power Consumption (Running all blowers and considering 5min idle running per hour)	KW	2920	2676
Power Savings	KW	24	4
Power Saving	MWH	2137	
Savings per year	Crores	1.0	6

Utilisation of renewable energy sources-Solar Energy Utilization


- RINL has been exempted from complying RPPO.
- RINL commissioned 5 MW Solar Power Plant Investment: Rs 36 cr
- RINL commissioned 0.5
 MW Roof Top Solar Power
 Plant at three Building
 Investment: RESCO Model

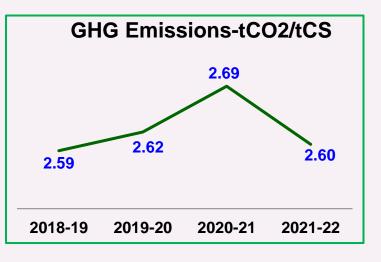
Utilization of Waste Material as fuel

Name of the Fuel	Quantity of waste Fuel used (MT/ year)	GCV of fuel (kcal/kg)	Heat Value (million kcal/year)	Waste Fuel as % of total energy used
Coke Dust	32863	6860	225440	0.58
LD Slag	151734	1000	151734	0.46
Met Waste	414004	500	207002	0.63
Tar sludge	4205	7100	29856	0.09
Benzol muck	405	7100	2876	0.01
ASP sludge	224	7100	1590	0.00
BF gas	9868000	853	8417404	25.50
LD gas	487100	1837	894803	2.71
Coke dust(sold)	38044	775	29484	0.09
Granulated Slag	2426228	1070	2596064	7.86

GHG Inventorisation

As per IS	O:14064:-
-----------	-----------

Details


Emission

Scope	Direct emiss	sions fr	om site cl	himnevs
•				2
1&1.1	determined	from	straight	carbon
			U	
	balance			

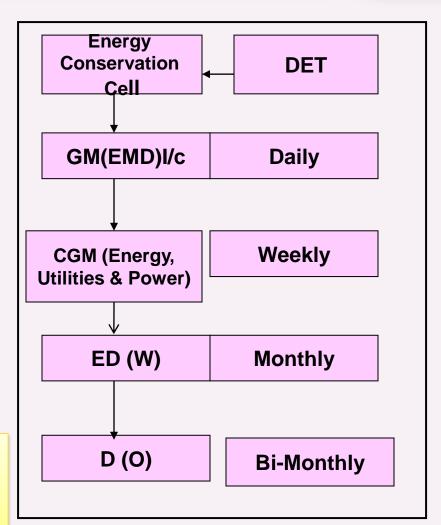
- Scope 2 Upstream emissions of electricity and steam from site.
- Scope 3 Other upstream emissions byproducts from site

Scope 1	Scope 1.1	Scope2	Scope 3	Total CO2(t CO2/TCS)
1,01,76,522	41,43,192	5,85,361	-43772	2.60

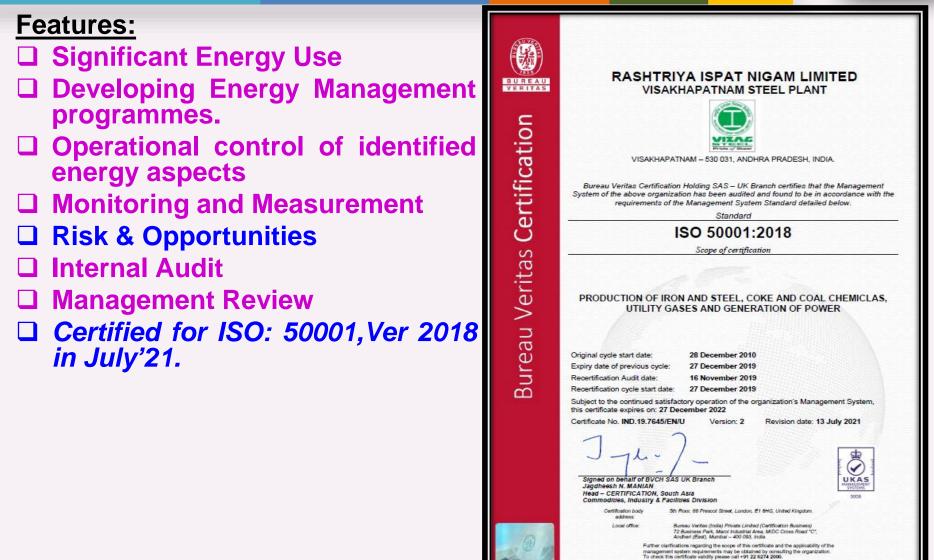
Involvement of employees, Team Work and Monitoring

Employee Involvement Through

- Quality Circles, Suggestion Schemes, Department Energy Teams, Participation in Energy Conservation Campaigns, Cost Control Campaigns, Water Saving Campaigns
- Implementation Methods
 - Low Cost/No Cost Ideas (Process Improvements, House Keeping Measures, etc) will be Implemented by Frontline officers
 - Medium Investment Projects through AMR Schemes
 - High Investment Schemes through Board Approval/COM
 - Special Task Forces for Implementing Important Energy Conservation Projects for Sinter Cooler, Steam Utilization and By product gases usage.


Monitoring Format

DAILY ENERGY REPORT								
	Production							
	ACTUAL			PARAMETER	UNET	NORM	ON DATE	-Aug-22 9/11
Monthly	On date	For the	Shon	PAKAMETEK	UNP	NERG	ON DATE	9,1
3000	250	250	COCCP	GROSS CONF YIFLD :	•	73.0	71.8	71.9
Plan/day	57	517	Bat-1	Met Cole Yid .	•	68.2	65.3	65.3
	58	519	Bat-2	C. O. GAS YIELD :	NOUN/TOC	335	329	330
	20	174	Bat-3	SP. HEAT, CONS :	ACAL/TEC	623	654	631
	52	472	Bat-4	C.O. 645 (C.V. 1	KOLMEUN	4150	4228	4163
	63	568	Bat-5					
400000	14580	141332	SP	SP. HEAT, CONS :	ACAL/TSP	21	31	21
	8670	60891	SP-1(M/c-1)	SP. HEAT, CONS :	ACAL/TSP	28	18	18
	5910	23111	SP-1(W/c-2)	SP. HEAT, CONS :	BCAL/TSP	28	50	47
	0	57330	5P-2	SP. HEAT, CONS :	ACAL/TSP	9	0	13
	4925	43175 43075	BF-1 BF-2	SP. HEAT, CONS-1:	RCAL/THM	558	458 538	477
	46/5	43075	BF-2 BF-3	SP. HEAT, CONS-2: SP. HEAT, CONS-3:	BCAL/THM	338 400	536	0
250000	9800	86250	BF(AII)	SP, HEAT, CONS-3: SP, HEAT, CONS (AII):	BCAL/THM	495	502	538
250000	0	0		B.F. GASYIELD :	BEAL/THE	3007	3208	3260
	ŏ	ŏ	Pallata/11-08(071)	CONF BATE BEL:	KR/THR	525	485	477
	ŏ	ŏ	Pellets/15-UK(RF2)	COKE RATE BP2 :	CRATHER.	435	461	484
	ŏ	ŏ	Pallets/1946(073)	COKE RATE BES :	NR/THR	420	0	0
	1281	1235	Sinter/1Hill(37)	CORE RATE (AI):	KR/THM	453	483	481
	1290	1259	Sinter/1948(971)	Pul Coal: BP-1	NO/THE	20	76	78
	1273	1210	Sinter/1H88(972)	Pul Coal: BF-2	KANTHAN	100	76	73
	0	0	Sinter/1H80(973)	Pul Coal: 8F-3	KIN/THEA	110	0	0
	1.0	1.0	02-8F1	Pul Coal (All):		82	76	75
	0.9	0.9	O288-2	B. P. GAS. C.V.	COL MICH	710	759	786
		0.0	0285-3	COAL RATE :	NO/THE	786	860	856
			SMS-1	HOT METAL RATE(R):	NAVILS	1000	995	995
89000	3360	36000	LS	SP. HEAT, CONS	ACAL/ICS	34	64	53
160000	3175	34054	CS	CONVIGAS VIELD :	NOW/TLS	95	122	112
600	24	27.4	Heats	SPOXYGEN CONS :	NOW/TLS	57	46	48
				SPARGON CONS :	NOW AND	226	187.8	182.1
				SP. LPG CONS:	Ky/ICS	0.19	0.28	0.33
			SM5-2	HOT METAL RATE(R):	KR/TLS	1013	998	996
160000	6160 5944	49896	LS	SP. HEAT, CONSCIOTAL	ACAL/TLS	42	33	36
154161	5944	48148 36.0	CS	CONVICAS VIELD : Total Heats	NO.W/TLS	88	94	106
1032	40	30.0	Heats		Piles .		1891	1830
249000				LD Gas CV Liquid Steel	KCALMEUN	1760 8007	1891 9520	85896
314161				Crude Steel	Ton	7678	9119	82202
314101	977	8493		Sp. Heat(CRWP-2)	ACAL/THE	940	877	868
100000	3507	28463	BILLETS	SP. HEAT, CONS :	ACAL/TOP	421	460	487
46000	2311	19400	BARS	SP. HEAT, CONS :	ACAL/TEP	20	21	21
0	0	0	WRM-1	SP. HEAT, CONS :	ACAL/TOP	248	0	0
60000	1720	15440	WRM-2	SP. HEAT. CONS :	ACAL/TEP	263	249	258
52000	1819	17599	MMSM	SP. HEAT. CONS :	ACAL/TEP	400	373	418
50000	2799	15010	SBM	SP. HEAT, CONS :	ACAL/TEP	300	288	347
15000	1693	15347	STM	SP. HEAT. CONS :	ACAL/TOP	310	292	319
TPP	116	119	TPP	SP. HEAT, CONS :	ACAL/TP	749	836	865
PP-2	31	32	PP-2	SP. HEAT, CONS :	BCAL/TP	720	846	916
GETS	2.6	2.5	PP-2	Heat Rate (pp-2):	Real/Reals	3071	3291	3112
TRT	0.0	0.0	1	Steam Rate (PP-2):	Tenderster	3.93	3.97	3.75
WHR	14.4	16.1	1	POWER GENBPTS	***	25.9	11.8	13.6
Imp	173.0	170.8	1	POWER GEN TRT + GET	***	13.7	2.6	2.5
Plant Load	334.8	337.8	00000	POWER GEN-NEDO		5.0		0.0
team (PP-1) Coal (PP-1)	18909 2761	176308 29221	LOSSES	C.O.GAS BLEEDING: B.F.GAS BLEEDING:		0.2	0.00	0.00
			1					
team (PP-2)	2990	26138	1	OXYGEN BLEEDING : NETROGEN BLEEDING	•	2.2	26.9	30.3
M (C Cool)	26.12	25.79	PLANT	SP. POWER, CONS :	S.	397	-0.6	610
sh (C Cool)	10.98	11.19	APP	SP, POWER, CONS : SP, ENERGY, CONS:	B.CAL/TCS	397	6.93	6.91
M (Coke)	0.59	0.60	TRP	OIL CONSUMPTION	105	167	0.95	0.0
ish (Coke)	15.39	14.88		On and N2	Number of	298	454	454
uel Rate	-169.0	COG YId	-21	WHR-CDQ	-88.86			
	-486.77	BFG YId	210.4	WHR-TRT	-70.22			
F Heat	-7.17	LDGYM	29.7		-31.58			-606.61


PDF created with pdfFactory Pro trial version www.pdffactory.com

-Energy Savings are quantified with respect to displacement of Boiler Coal -Electrical Savings are quantified by pegging with Electricity imported. -Savings are certified by Energy Auditors

Energy Management System ISO:50001

Implementation of Corrective/Preventive actions

Bureau Veritas (India) Pvt. Ltd.

ASHTRIYA ISPAT NIGAM L

To be completed by Bureau Veritas

Date	Organization		Contract nº	Report n°
18-06-2022	RASHTRIYA ISPAT NIGAM L	RASHTRIYA ISPAT NIGAM LTD		50kS5VSS-IN01
Non Conform	nity Observed During	5th Surveillance audit		
Process		MMSM - Medium Mer	chant & Structural M	ill
Standard	Standard ISO 50001:2018			
Clause		50k-8.1 Operational p	lanning and control	
Site Name HEAD OF		HEAD OFFICE		
Non Conform	nity Description			

STANDARD REQUIREMENT: 8.1 Operational planning and control

The organization shall plan, implement and control the processes, related to its SEUs (see 6.3), needed to meet requirements and to implement the actions determined in 6.2, by:

c) implementing control of the processes in accordance with the criteria, including operating and maintaining facilities, equipment, systems and energy-using processes in accordance with established criteria;

DESCRIPTION OF THE NON-CONFORMITY: The process of implementing the operational controls as per the defined critera is not effective

OBJECTIVE EVIDENCE: Air fuel Ratio is maintained from 1:2.44 to 1:2.46 since Jan till May 22 as recorded in operation daily logbook. However, same to be maintained at 1:2 to 1:2.2 ratio for mixed gas with calorific value of 2000 K Cal/Ncu and 1:5 to 1:6 in case of Coke oven gas with CV of 4000 to 4500 K Cal/Ncum as per Work instruction QSHE-I-Q-MSM-(E Issue date: 20 Jan 2021.

Grade	Lead Au	iditor	Au	ditor	Organization Rep.
Minor	V S SATISH	IKUMAR	V S SATI	SH KUMAR	Mr. Saibal Sen / Mr. A
To be completed before					V S Satyanarayana
31-07-2022	VSS-IN	1-1CM9LMJ	VSS-IN	1-1CM9LMJ	

To be completed by the organization

Root Cause Analysis (What failed in the system to allow this non conformity to occur ?)

Evidence of maintaining Air Fuel ratio as per procedure is not available as maintaining air fuel ratio depends upon calorific value of mixed gas. As per procedure, indicative ratio of 1:2.0-1:2.2 is given for mixed gas CV of 2000 Kcal/Ncurr. Though procedure explicitly mentioned of adjusting air fuel ratio dynamically, the actual air fuel ratio with relation to CV is not defined due to misinterpretation


Correction (What is done to solve this problem)

The air fuel ratio is defined in the procedure based on CV of mixed gas, and procedure is amended. The copy of procedure is attached. Air fuel ratio up dated in data collection plan record which is also attached.

Corrective Action (What is done to prevent reoccurrence)

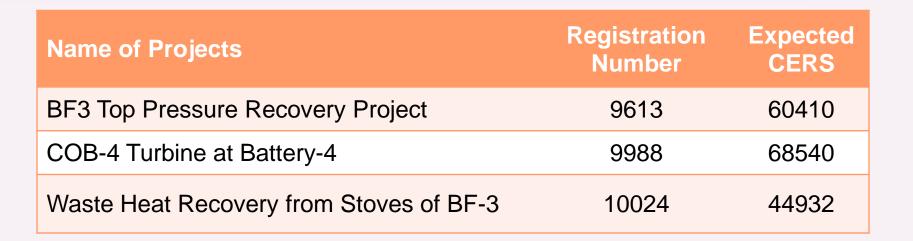
Awareness session conducted to all concerned on the revised procedure and data collection plan.

- Plant has taken up Energy Objectives and Energy Management Action plans(795 Nos) to reduce energy consumption.
- **DEPARTMENTAL ENERGY TEAMS** were constituted in various departments. The teams identified specific projects
- Departments conducted energy audits at various equipment through Departmental Energy Audit Teams

Rashtriya Ispat Nigam Limited

Environmental Projects & Projects linking with Carbon Emission Reduction

Projects	Benefits	Sp.	Water Cons-Cu	m/tCS
Revamping of Burden handling & Cast House FE system of Blast Furnace-1.	Reduce Dust emissions	2.27	2.26	2
Balacheruvu, Waste Water Treatment Plant - Commissioned in July 2014.	253 Million Gallons	2019-20	2020-21	202
Commissioning of Appikonda Waste Vater Treatment Plant	220 Million Gallons	0.16	cific SPM load(I	(g/tcs)
The Digital display board at Main Gate vas inaugurated by CMD on 5th June 2014 for displaying the CAAQM and Stack analyzers.	Awareness	2019-20	0.14	0 202
Dry Fog Dust Suppression System DSS) in Expansion area of Raw Material Handling Plant, Sinter Plant &	•	Specific 3.09	Raw Material Con (t/tcs) 3.10	sumptio
Blast Furnace. Rain water harvesting scheme near 18 MLD plant	Ground water recharging			
		2019-20	2020-21	202


Rashtriya Ispat Nigam Limited

Energy Conservation Projects identified for next three years

SI No	Name of Energy Conservation Activity	Year	Impact (Mcal/tCS)
1	Recommissioining of LD Gas holder-2	2022-23	14.9
2	To improve Pulverized coal injection at BF-1 from 107.2 Kg/tHM to 121 kg/tHM at Blast Furnace	2022-23	8.7
3	To improve Pulverized coal injection at BF-2 from 100.3 Kg/tHM to 121 Kg/tHM at Blast Furnace	2022-23	12.9
4	To improve power generation at SHRPP from 1.69 MW to 5 MW.	2022-23	13.2
	Total Savings		49.8

Environmental Projects & Projects linking with Carbon Emission Reduction

□4 No. of projects registered (TRT, COB4, BF3-WHR). □UNFCCC issued 1,71,929 CERs to RINL for three CDM projects.

Adoption of Green Technologies

Name of Technology	Features	Energy Savings(TOE)	GHG redn(tCo2)
<u>Coke Dry Quenching</u> <u>Plant</u>	Power gen: 2X7.5MW	115285	689586
Top Pressure Recovery Turbine	Power gen; 2x12 MW	21257	127152
LD Gas Recovery System	80000 Cum	58022	347060
Evaporative Cooling System	13 ata steam: 19 t/hr	12173	72814
Preheating of combustion air at CRMP	Air preheating: 250degc	3469	21062
Gas and air recuperators in ROLLING MILLS	Air : 450 degC Gas:250 degC	16105	57088
Reducing C	GHG emission by about 1	3 lakh tons annua	ally

Rashtriya Ispat Nigam Limited

Adoption of Energy Efficient Technologies-Unique Features of RINL

Name of Technology		Level of Diffusion
Coke Dry Quenching Plant	First Time in India(1990)	13.5%
<u>Top Pressure Recovery</u> <u>Turbine</u>	First Time In India(1993)	13.9%
LD Gas Recovery System	First Time in India(1991-93)	50%
Evaporative Cooling System	First Time in India(1993)	25%
Sinter Cooler Waste Heat Recovery(Power Gen)	First Time in India(2014)	5%

Action Plan to Achieve "NET ZERO-2070"

Parameters	2021-22	2030	2030 (with policy intervention)	2047	2047 (with policy intervention)
GHG Emissions	2.60	2.40	2.10	2.30	2.00

Action plan (With policy intervention)

- Usage of Natural Gas based on availability and cost
- Usage of more scrap based on availability of quality Steel Scrap
- Installation floating Solar Power Plant reservoirs (KBR) with financial assistance from National Clean Energy (NCEF)
- Installation of WHR systems like regenerative burners in reheating furnaces and Coal Moisture Control with financial assistance from National Clean Energy (NCEF)
- Usage of hydrogen in Blast furnace based on availability and cost

Roadmap for reduction of Energy Consumption & GHG emissions.

Action plan to achieve 2.40 tCO2e/tCS by 2030,

- a. Increasing Pulverized Coal Injection in Blast Furnace up to 150 Kg/tHM
- b. Optimizing power generation from Waste Heat Recovery system like CDQ, SHRPP & TRT
- c. Process optimization (combustion improvement, installation of VFD drives, optimizing fuel rate in BF)

Pride of Steel

De-carbonising Options for Iron & Steel

Parameters	Unit	Present		Target	Impact (tCO2/tCS)
GHG emissions	tCO2/tCS	2.60		2.10	0.50
		BPTS , COB4,COB5	28	33	0.04
Waste Heat Recovery	MW	GETS	5	10	
		SHRPP	1.85	8	
		TRT	6.28	10	
Usage of Scrap at SMS	Kg/tCS	80		200	0.240
PCI Rate	Kg/tHM	94		150	0.034
Natural Gas(lf Available)	Cum/tHM	0		120	0.07
Power Optimization	Kwh/tCS 402			350	0.04
Heat Optimization	Mcal/tCS	1834	1834		0.07
Yields Improvement (Coke)	%	72.5		74.5	0.06

□ Usage of Hydrogen in place of PCI coal

□ Injection CO Gas in BF, Syngas injection into BF

□ Carbon Capture usage and Storage (CCU&S) technology

- CII National Award for Excellence in Energy Management & National Energy Leader Award-2021
- CII National Award for Excellence in Energy Management & National Energy Leader Award-2020
- National Energy Conservation Award-1st Prize from Ministry of Power-2019
- CII National Award for Excellence in Energy Management & National Energy Leader Award-2019
- CII National Award for Excellence in Energy Management-2018
- CII National Award for Excellence in Energy Management-2017

Thank you

K Sudhakar, Email: <u>konthamsudha@vizagsteel.com</u>, Mob: 9989307213 S Kumar, Email: <u>sudhanshu_k@vizagsteel.com</u>, Mob: 9959785844