

CII Award for Excellence in Energy Management – Metal Sector Bharat Aluminium Company Limited

Date: 24 -Aug'22

Prakant Sinha- Associate General Manager Anish Rao- Deputy Manager

Vision : To be a World Class Integrated Aluminium & Power Producer Generating Sustainable Value for All Stakeholders

- Sharat Aluminium Company (BALCO) has made significant contributions as the 1st PSU in India's Aluminium sector Incorporated in 1965, BALCO is India's first integrated Aluminium business.
- One of the first disinvestments of the Government of India. It now a part of Vedanta Limited, with 51% stake held by Vedanta Limited and 49% held by Government.
- Balco is based in Chhattisgarh State having Captive Bauxite mines in Mainpat and Kawardha, Captive coal mines in Chotia, 2010 MW power generation capacity and 5.7 LTPA Aluminium Smelting capacity at Korba Complex.
- Balco produces Wire Rods, Ingots, Alloy Rods, Alloy Ingots and Rolled Products. Balco is also selling Power to State Utilities & own sister concerns.
- Balco has been India's first to have Captive Power Plant, to venture into +300 kA Prebake pots, to produce Alloy Rods for conductors used in power transmission industry, to roll material for Aerospace Industry, online riser replacement, busbar insulation in Pot Room, single beam implementation and holds patent for aluminium cell fuse technology.

Pot line Process Flow

96%

Prebaked smelting processes (Hall Heroult) involve electrolytic reduction of the Alumina by Carbon to Hot metal and Carbon dioxide. 2 Al2O3 (dissolved) + 3C(s) ----> 4Al(l)+3CO2(g)

Energy Objectives

ENERGY OBJECTIVES (FY 22) :

Reduce Net AC Power consumption for

Potline-1 (13031 KWH/MT to 12958KWH/MT) - 73 kWh MT Potline-2 (13325 KWH/MT to 13094 KWH/MT) -231 kWh/MT

- Reduce Auxiliary Power Consumption of potline-1 from 400 to 379 KWH/MT- 21 kWh/MT
- Reduce Auxiliary Power Consumption of Potline-2 from 521 to 460 KWH/MT - 61kWh/MT

ENERGY OBJECTIVES (Vision FY25)

- Reduce Net Power consumption 12865 kWh/MT of Al
- Reduce Auxiliary Power Consumption of potline-1 -82 kWh/MT
- Reduce Auxiliary Power Consumption of Potline-2 124 kWh/MT

International Benchmark

National Benchmark

BALCO Vision

****** Balco is benchmark in Indian & Gulf smelters in DC Specific Power Consumption

Specific Energy Conservation Journey

S. No.	Major Projects / Action Plan for Vision FY25	Power Saving	Unit	Target Completion
1	Installation of 100% graphitized Cathodes	228	Kwh/MT	Mar-23
2	Up gradation of Pot-control system in Pot-line 2	417	Kwh/MT	Mar-23
3	Replacement of conventional motors with energy efficient motors	230	Kwh/MT	Mar-25
4	Reduction of Stub Carbon drop , High Slotted Anode	33 & 57	Kwh/MT	Mar-24
5	Reduction of Auxiliary energy Consumption PL-1 & PL-2	21&61	Kwh/MT	Mar-23

S.No	Title of Project	Annual Energy Saving Million KWH	Investment Million INR
1	Increase in Potline1 Current Efficiency from 94.28% to 94.65% to save 56KWH/MT	11.02	NIL
2	Cathode upgrade & Process optimization in Potline-1 40 pots in FY 20(55KWH/MT).	12.53	304
3	Increase in Pot line 2 Current Efficiency from 93.85% to 94.38% to save 79 KWH/MT	10.98	NIL
4	Cathode upgrade & Process optimization in Potline-2 102 pots in FY 20.(142KWH/MT).	15.55	561
5	Bake oven-Duct leakage arresting in FTP duct leading to a a reduction in ID fan speed by 2 %.	0.12	NIL
6	Ach Potline-2 Reduce the operating pressure of pumps in line 2 compressor pump house by VFD installation)	0.08	1.6
7	GAP- HTM heater oil change	0.08	NIL
8	Foundry -Optimizing Temperature set point of all holding furnace	0.01	0.03
	TOTAL (ROI- 18 Months)	50.37	866

S.No	Title of Project	Annual Energy Saving Million KWH	Investment Million INR
1	120 (PL 1 : 45 pots & PL 2 :75 pots,) 100% graphitized pots installation & Normalization	79.1	138
2	Reduction in Sp Aux consumptions by 19 kwh/mt (F20 : 479 to BP21 - 459)	3.58	2
3	Auto Cut off EMS whenever furnace tilts up in Cast house 1	0.03	NIL
4	Optimizing furnace temperature set point by operational excellence in cast House 3	0.44	NIL
5	Optimization of annealing furnace cycle time from 9 Hr. to 7 Hr.	0.02	NIL
6	Reduction of compressed air Usage in cast House 3	0.24	NIL
7	Closed loop system in pump house in cast House 3	0.51	35
8	Optimizing furnace temperature set point by operational excellence	0.44	NIL
	TOTAL (ROI- 18 Months)	84.36	175

S.No	Title of Project	Annual Energy Saving Million KWH	Investment Million INR
1	120 (PL 1 : 43 pots & PL 2 :77 pots,) 100% graphitized pots installation & Normalization	82.7	1440
2	Reduction in Sp Aux consumptions by 15 kwh/mt (Mar'21 : 454 to BP21 - 440)	1.13	NIL
3	Idle running hours reduction of roller conveyors(10 conveyors)	0.01	NIL
4	Cast House Reduction in compressed air consumption	0.22	NIL
5	GAP Throughput Increment	0.04	NIL
6	Led Replacement	0.66	2
	TOTAL (ROI- 15 Months)	84.76	1442

S.No	Title of Project	Annual Energy Saving Million KWH	Investment Million INR
1	110 (PL 1 : 14 pots & PL 2 :37 pots,) 100% graphitized pots installation & Normalization	1.2	510
2	Reduction in Sp Aux consumptions by 15 kwh/mt	16	65
3	Reduction in Stub to carbon drop by 33 kwh/mt -	7.9	NIL
4	Reduction in High Slotted Anodes by 57 kwh/mt	7.8	561
5	Reduction due to ALPSYS by 350 kwh/mt -	32	900
6	Process Optimization – (Voltage Gain, Enhancement of CE)	32.6	NIL
7	Gap process Optimization	0.78	NIL
8	SRS & Foundry process Optimization	2.0	NIL
9	Cast House Reduction in compressed air consumption	0.9	NIL
	TOTAL (ROI- 18 Months)	53.27	2036

Description

Aluminium manufacturing is done through Electrolytic process which involves huge power consumption of up 13500-14000KWhr/MT of AL. It is thereby necessary to explore all possibilities to control the consumption and reduce Carbon Footprint. Power consumption of potline is measured thus

DC Energy consumption= Gross Voltage(in V)/CE%*Kh of Al prod./hr*KA

Scope of project

Reduction of Voltage by even 0.005V/Cell will give a huge margin to reduce Power consumption by 15Units. Voltage is required in aluminum production to drive the current through the reduction cell. In practical application its seen that voltage required to run the reduction cell is more than the theoretical value. This is mainly to overcome various losses and resistance of mediums involved in the electrolytic cell. One such huge scope is in Anode voltage Drop.

Various drops in the total Anode Drops are Clamp drop, Stem to Clad, Clad to Stub, Stub to Carbon, carbon drop. This trial is based on the actions taken to reduce drop between Stub to Carbon.

Drop specification	Drop Values	Contribution
Anode clamp drop reduction	20	5%
Stem to Clad drop reduction	50	14%
Clad to Stub reduction	30	8%
Stub to Carbon drop	85	23%
Carbon Drop	180	50%
Total Anode Drop	365	

While benchmarking, Stub to carbon drop was found to have a huge scope for improvement

Target	3.3 - 3.7 %	0.6 - 0.9 %	0.5% max.	0.2 % max	2.7 - 3.2 %	4.3 - 4.7	
	Carbon	Manganese	Phosphorus	Sulphur	Silicon	Carbon Equivalent	STC
Unit	%	%	%	%	%	%	mv.
BALCO	3.45	0.68	0.09	0.34	2.93	4.46	84
VAL,P-1	3.62	0.81	0.06	0.15	2.68	4.54	82
VAL,P-2	3.53	0.85	0.06	0.11	2.73	4.46	76
Benchmark (Alba Traget)	3 - 3.6 %	0.3 - 0.8 %	1.4 - 1.6 %	0.075% max	2.5 - 3.5 %	4.3 - 5.3%	
Alba Line-5 (Avg value)	3.27	0.56	1.45	0.04	2.59	4.61	56
Sohar							65

Modifications done

1. Increased Slot in Anode block from 230 to 300mm: Helps in reducing bubble drop and in AED reduction.

Old Design 230mm slot anodes

New 300mm High Slot anodes

2. Modified Stub hole dimensions and No. of flutes

	Normal Anodes	Modified Anodes
stub Outer Dia	190	205
Stub Inner Dia	180	190
Stub Depth	117	122

Vedanta Limited, AQLE STUB HOALCO | 12

MODIFIED STUB HOLE

		Trial nots		Ref		Trial Vs	Trial VS	Trial Vs	Trial VS	
		avg	Ref Pots	section		Rof	sec	Rof %		Remarks
	Refore Trial	4 121	1 117	4 126	Sot1/	-20	-21	-16/1%	_150%	SetV Reduced in trial Pats compared to Ref
SetV	During Trial	4.121	4.117	4.120	Jelv	-20	-21	-10470	-13970	
		4.113	4.129	4.139	mv					
Avg V	Before Trial	4.131	4.126	4.139	Avg Volt	-14	-12	-92%	-90%	Avg Volt reduced by 13mv compared to Ref
,	During Trial	4.132	4.142	4.153	mV					
Naisa	Before Trial	10.1	10.7	12.6	Noise	2.7	3	-1%	-1%	Noise increase by 2~3mV but avg is within 13mV
NOISE	During Trial	12.7	10.6	12.2	mV					
	Before Trial	0.1	0.4	0.3	VF	0.41	0.46	0.04%	0.05%	Swing/Day increased by 1.5mins/Day compared before trial
VF	During Trial	1.6	1.4	1.3	/pot/day					
	Before Trial	0.24	0.04	0.11	AEF	-0.17	-0.09	-0.2%	-0.3%	AEF reduced compared to reference. Also brkr fdr issues
AEF	During Trial	0.18	0.14	0.14	/pot/day					were there in 1601,1602 Trail pots
	Before Trial	2.3	1.5	2.5	AED	-1.4	-0.18			AED lesser by>1min compared to Reference
AED	During Trial	2.1	2.7	2.5	/ae					
	Before Trial	48.7	60.5	45.1	ALF3	-0.2	-5	0.0%	-0.1%	AIF3 reduced even upto 6Kg compared with Ref
ALFS	During Trial	48.0	60.0	49.6	kg/day					
рт	Before Trial	954.3	957.6	956.6	BT	1.2	2	-0.4%	-0.2%	BT seems increased compared to Ref. Still in Range.
Ы	During Trial	955.2	957.3	955.9	°C					
Muchroom	Before Trial	1.0	2.0	3	Mushroom	2.0	1	0.0%	0.0%	Mushroom increased compared to the sections trend.
	During Trial	9.0	8.0	10						Probable Causes other than anode: PO, fdr lkg, brkr problems
C F	Before Trial	94.9	95.3	95.1	CE	3.7	2			Increased current efficiency in trial pots compared to
LE LE	During Trial	96.5	93.1	94.8						ref pots, ref section, same pots before trial period too.

2 Pots selected and the modified special Anodes were used. The results were compared with pots of the same age, and average of total section. Around 20mv impact in voltage reduction with significant reduction of 1min in AED too. Around 10mV of voltage reduction contribution from Stub hole modification, and the remaining 5-10mV through Increased Slot

	AVG STUB	
	TO CARBON	Units
1601	64.4	mV
1602	79.5	mV
Average	72.0	mV
Difference from normal range	12	mV
Impact reduction in Pot V	6	mV
Energy Impact	18	kWhr/T of Al
Cost Benefit	106,117,460	Rs/Year

Description -Energy is the product of voltage, current and time and it is energy that has to be paid for, hence it is desirable to operate at high current efficiency and consume as little voltage as possible at the same time ,DC Energy consumption= gross Voltage(in V)/CE%*Kh of Al prod./hr*KA

Scope of project Voltage is required in aluminum production to drive the current through the reduction cell. After pot cut out from the circuit, ideally voltage of the dead pot should be zero but it has residual voltage. This is associated with the voltage drop across welding joints in alternative current flowing bus bars (Compensating bus bars), and also, lower cross section area coupled with higher current density in alternate current path (Compensating bus bars). So, In order to reduce dead pot voltage, following

1. Provide an alternate shorter current flow path which is having higher cross section and lower current density.

Dead Pot voltage trend before the project

S.No.	CUT OUT DATE	Pot No	Cut Out Voltage
1	8-Jan-21	604	0.35
2	20-Jan-21	434	0.34
3	29-Jan-21	834	0.38
4	7-Feb-21	601	0.32
5	10-Feb-21	715	0.37
6	18-Feb-21	336	0.34
7	3-Mar-21	515	0.30
8	5-Mar-21	824	0.33
9	21-Mar-21	135	0.35
10	4-May-21	228	0.32
11	7-May-21	421	0.33
12	12-Jun-21	233	0.34
13	18-Jul-21	128	0.39
14	29-Jul-21	516	0.38
15	19-Aug-21	816	0.37
16	24-Sep-21	822	0.40
17	6-Oct-21	632	0.34
18	11-Dec-21	201	0.31
	Average	0.35	

Contributing causes of higher dead pot voltage

- Circuit length of CB 1 and CB 6 is highest, hence, current passing through this route will experience higher resistance.
- Welding joints are highest in CB 1 and CB 6, hence, current passing through this route will also experience higher resistance.
- Higher circuit length coupled
 with higher number of welding
 joints is accountable for higher
 voltage drop in CB 1 and CB 6
 while the pot is cut out. Hence,
 it is decided to install a
 connector to divert the current
 from CB 1 and CB 6 to cathodic
 bus bars

Design development of bypass connector

New Design connector Cross section 90*10*20*6 = 111000

Compensating Bus-bar Cross section 300*250

= 75000

Current flow direction in from live pot to dead pot

Before connector placement

After connector placement

Reduction in dead Pot voltage after implementation & savings

Pot No.	Cut Out date	Before Implementation Pot Voltage	After Implementation Pot Voltage
729	30-Jan-22	0.368	0.118
320	05-Mar-22	0.389	0.120
704	12-Mar-22	0.369	0.114
321	24-Mar-22	0.378	0.135
107	14-Apr-22	0.378	0.153
413	30-Apr-22	0.395	0.157
618	10-May-22	0.382	0.143
316	21-May-22	0.353	0.147
828	26-May-22	0.402	0.147
124	30-May-22	0.410	0.159
633	12-Jun-22	0.381	0.155
634	17-Jun-22	0.379	0.174
215	26-Jun-22	0.301	0.140
529	29-Jun-22	0.369	0.128
307	06-Jul-22	0.374	0.180
527	14-Jul-22	0.405	0.169
224	26-Jul-22	0.407	0.140
Av	verage	0.379	0.146
Savings/pot(mv)		0.234	

Savings/pot(mv)	0.234	
Average shut down pot	9.2	
saving(Mv)	2.2	
Saving kwh/mt	7.1	
Total Saving(\$/mt)	0.4	

Innovation Project title – Fitch fuel catalyst use in Bake oven and cast house .

Date of Commencement -05-11-2021

Date of Completion – 16-06.2022

- Trigger for the project In order to save HFO consumption and to reduce emissions in Bake Oven and cast house.
- 2. Outcome expected by project implementation –Improved combustion efficiency leading to 2-5% less HFO consumption and lesser emissions.
- **3.** Why the project is Innovative Currently no Aluminium company is using this kind of technology for fuel saving and lowering the emissions.
- **4.** The process deployed and innovation implemented -Benefits derived- Around 5 to 10 % of fuel saving is expected by this with lower emissions then current situation.

Environment Management Initiatives

Designated Consumer under PAT scheme for Aluminum Sector. PAT cycle -1 target over achieved by **0.088 TOE** (awarded 22203 EScerts).

Balco has topped in PAT Cycle-2 in Aluminium Sector across India. Highest no of Energy certified - 4.24 Lakhs

power in Potline-1

Particulars	UOM	PAT Cycle -2
Notified baseline SEC (Period 14-15)	TOE/MT	5.3967
Notified target SEC	TOE/MT	5.0275
SEC Target for Reduction	TOE/MT	0.3692
Achieved SEC	TOE/MT	3.42
Energy Certificates achieved	Nos.	424421

GHG Inventorisation

Year	Scope 1 Emission Kg CO2 /Ton Final Product	Scope 1 Emission Kg CO2 /Ton Final Product	Kg CO2 /Ton Final Product
2014 - 15	21	2.3	23.30
2015 - 16	18.30	0.2	18.50
2016 - 17	18.87	0.03	18.90
2017-18	17.32	0.27	17.59
2018-19	17.38	0.05	17.43
2019-20	17.79		17.79
2020-21	17.29		17.29
2021-22	16.75	0.26	17.03

Scope -3 calculation

FY21 - 3Kg CO2 /Ton Final Product

Plan for E-Vehicle model to be adopted both in OPEX model. having plan to Change Battery Operated vehicle for shorter distance movement.

This will also optimize the

transportation cost in longer term as right sizing led to 40% reduction in cost

Annual CO2 release amount is 3470000 Kg Co2 approximately per year which can replaced by use of E-vehicle

Plantation Drive							
Year	Survived						
2015-16	30000	25434					
2016-17	30000	25000					
2017-18	5000	4500					
2018-19	5000	4500					
2019-20	15000	12000					
2020-21	10000	8000					
2021-22	15000	14500					

Waste to Wealth

Utilization of Renewable Energy

- Grid connectivity for simultaneous import/ export to meet RP Obligation & ESG Commitments.
- > 10 MWp Solar plant installation in 270 MW BCPP.
- ➢ Installed 33 KW Grid connected Solar power plant.

Short term : On opportunity basis, 310.36 MU of RE Mix purchased from grid.

Long term :

- > 200 MW renewable mix tie up for BALCO smelter operation with Partner (Sterlite Power) by FY 25.
- ➢ 600 MW renewable mix tie up for BALCO Smelter operation to be completed by FY-30.
- Continuous purchase of Renewable energy Certificates from Exchange as per opportunity.

Vedanta Alumin	ium Business was	India's largest 🗸
Green Power Pu 200+ coverage in international publicat	rchaser in Q1FY22 ions potential audience reach of 50 million	Purchased 354 Million Units of renewable energy from IEX Green Market, which is m than 35% of the green power traded on II in Q1 FY22!
THE WALL STREET JOURNAL	FINANCIAL TIMES	Bloomberg
verse had a low one hyperbolic or we had a be call of Parameters versions	Vedanta Ltd Vedanta Aluminium Becomes India's Largest Green Power Purchaser	Business Vedanta Aluminium Becomes India's Largest Green Power Purchaser
The Company has purchased 354 Million Units of renewable energy in FY22 from the IEX Green-Term Abead Market	Y f in ~ 0	Vedanta Aluminium Becomes India's Largest Green Pover Purchaser
Mite (DirdHallMathi SHI)happet 49, 2021- Watta Ankinnan human. Ishiri Jonger producer of humanian mel value-added products, Jones hufta'i larget press power producer of the huftan. Energy Exchange Limited (DTI) on (PTA): Pro In ingrate imprated humanian production facility of Amerapath, in Orlina, Hufta, Wetters proceed 548 million sturies of the non-onlor researching and the human strategies and the star of the star of non-onlor researching and the human strategies and the star of the star measured energy printered by from IECS (Note: Three Add Matchel (OTA)). Parchange of pomo proceed from GTAM has enabled equation from Iaa Valutati to address	The Groupsup has parchased 523 Million Units of renexable energy in FYEs from the HT GORES THEM AND ALL AND AL	The Gauge An approach and the Ultragenetic processing of the U
their carbon-mitigation targets while producing green? value-added products. Vedanta Aluminium's purchase of green power units is more than 35% of the green power traded on IEX in QI FY22.	Purchase of green power from GTAM has enabled organisations like Vedanta to achieve their carbon-mitigation targets while producing igners' value-added products. Vedanta Aluminism's purchase of green power units is more than 35% of the green power traded on IEX in Qa FV22.	antieve their carbin-artigatis targets with probabing "green" with-added products. Heater Aluminari's process of preven power withs see the 35% of the green power traded on IEL in 21 FV22. Separing about Hederics's approach towards carbon mitigation, Mr. Rabal Dear
Speaking about Vedants's approach treasmfs carbon mitigation, Mr. Rohni Blarma, CEO – Vedanta Aluminium Brainess and, "Our surshanishility importative are designed to fulfil our climate impact reduction targets, which are in complete alignment with the apoll of Paris Agreement and Bioinsulty Determined Contributions (DIC) submitted by the Commensue of Mrich Unders Manimistry areas restants (MRC) submitted by the	Speaking about Vedantis's approach towards carbon militation, Mr. Rahul Sharma, COD – Vedanta Aluminium Business said, "Our rationability imparties are designed to full our climate input reduction targets," thick are in complete singument with the galasi of Paris Agreement and Matismaly Deminated Contributions (PDC) submitted by the Genement of Mails Vedanta Matismices more retractionabile maniform hard function, two proceed Integer -	Despine the forth our clines have reactive terpine, which are to only alignment with the pairs of third agreement distribution. Second energy assessed the set forces and the terpine set of the termine force on each energy may assess of assess and processes, and reacting there is a set of the set of the termine set of the termine termine active execution in the termine set of the termine termine active execution in the termine set of the termine termine active execution in the termine set of the termine termine active execution in the termine set of the termine processes and the termine set of the termine set of the termine processes and termine set of the termine set of the termine processes and termine set of the termine set of the termine processes and termine set of the termine set of termine set of termine processes and termine set of termine set of termine set of termine processes and termine set of termine set of termine set of termine processes and termine set of termine set of termine set of termine processes and termine set of termine set of termine set of termine processes and termine set of termine set of termine set of termine processes and termine set of termine set of termine set of termine processes and termine set of termine set of termine set of termine processes and termine set of termine set of termine set of termine set of termine processes and termine set of termine set of termine set of

RPO Obligation Details

Vear	Captive	% of Obligation		Obligation in Units (MWh)	
icai	(MWh)	Solar Non Solar		Solar	Non Solar
2020-21	7996674	1.00%	6.25%	79,967	4,99,792
2020-21 (Import)	4990	6.50%	8.50%	324	424

Renewable Energy

- Biomass Pilot Trial taken successfully at BALCO CPP#2(4X135 MW) in month of June-20, total 125 tons of biomass was blended from 3% to 10 %to check technical feasibility as per MNRE guideline line.
- Biomass Co-firing initiated in May-22. Total 555 tons of biomass co-fired with coal till July'22.
- > Co-firing to be resumed after Monsoon period. Total 0.692 MU generated till now via biomass co-firing.
- \succ 5% biomass co firing to be done existing facility(1740 MW).

Next steps

- Tie up for the long term contract for locking the vendors and to be first mover in market.
- Mapping of raw material availability in nearby area through CSR initiatives and engagement to capture the RM quantity
- Engagement of Vendors established biomass briquettes/pallets manufacturing plant near to Balco to reduce landed cost and sustainable operation.
- Connect the new start up for biomass supply under Vedanta green Spark initiative.

Green Supply Chain & Ongoing Plans with Various Vendors

SN	Initiatives	Savings IN Rs
1	Smart logistics for vehicles	1.1 Cr /Year
2	Saving Disel & consumable : Muffler & Gasket	8 Lakhs
3	Availability of LCM machine	8 Lakhs
4	Reduction in Ladle Dispatch cost	5 Lakhs

Implementation of Best Practices

Idea Portal & !DEA@BALCO APP for generation of ideas for All Balco & Contract employees.

- Idea generated FY22 8576
- Idea accepted FY22 5116
- Idea implemented FY22– 5064
- Idea under implementation FY22 –3512

Sl. No.	Name of the Vendor	Description of the Collaboration / energy reduction initiative
1	SGL	For energy efficient cathodes
2	GAMI & AP	Pot controller upgradation
3	SKF	For energy efficient bearing & V-belts
4	EESL	Energy Efficient Motor replacement
5	Atlas Copco	Compressed Air Audit

6 Energy Audit Mott Macdonald

Green-co certification is on process with CII

CII assessor for Greenco pre-assessment done In BALCO plant –Date: 17th Aug-22 to 23rd Aug 22

Learning From Cll

- Closed loop Implementation in Pump Houses
- Compressor House Air line Interconnection HP & LP line

Energy Policy & Certifications

#	Description	Certification
1	Quality management system	ISO 9001:2015
2	Environment Management System	ISO 14001:2015
3	Occupational Health & Safety Management System	ISO 45001:2018
4	Energy Management System	ISO 50001:2011
5	Asset Management System	ISO 55001:2014
6	Quality Management System for the automotive industry.	IATF 16949
7	Information Security Management System(ISMS)	ISO/IEC 27000:2013
8	NABL accredited Lab	ISO 17025:2005
9	Social Accountability	SA8000

Creating Awareness Among Stakeholders

Idea Theme for Jul'22 – Waste Management	vedanta transforming for good balco	Idea Theme for	Nov'21 – Save Energy	en e
Most favoured option REDUCE REUSE REPAIR RECYCLE REC	enefits of implementing this FORMATE	Share your ideas through Idea@Balco mobile app https://ideaatbalco.app6.iny Use tag #Energy# before mentioning the ideas	R & R CATEGORY 1. Best Idea of the month 2. Max Idea Generator SBU 4. Quick 5 Ideas ENERGY CONSERVATION FHINK CREEN THINK CREEN Energy Conservation THINK CREEN Energy Conservation THINK CREEN	tergy served fife served

Energy savings from Employee & Stakeholder Involvement

32.2

FY 21

23.78

FY22 (YTD

Feb'22)

Details	Unit	2015-16	2016-17	2017-18	2018-19	2019-20	2020-21	2021-22
QCs & Kaizen Projects Implemented	No.	918	1277	2019	2629	6544	8032	4613
Energy Savings	Kwh	4375000	26892304	59584971	25367013	31381627	8,48,70,225	8,42,25,659
Benefits due to energy savings	Rs. lacs	131	806	1788	887	1098	2907	2378

Status of EnMS (ISO 50001) Audit Observation

	Year	No. of NC	No. of Observation	Open NC	Open Observation
Balco	15-16	3	17	0	0
Balco	16-17	0	10	0	0
Balco	17-18	0	6	0	0
Balco	18-19	0	5	0	0
Balco	19-20	0	3	0	0
Balco	20-21	0	2	0	0
Balco	21-22	0	1	0	0

%Investment for Major Energy conservation projects on Turnover

FY	Project Description	Investment (Rs. Crs)	Turnover (Rs. Crs)	% Investment on Turnover	ROI (Months)
2018-19	Pot controller up gradation PI-1 & Energy efficient cathode	183	9063	2.0%	20
2019-20	100% Graphitized Cathodes	138	10500	1.3%	18
2020-21	100% Graphitized Cathodes	101	9688	1.04	18
2021-22	100% Graphitized Cathodes	147	13607	1.08%	15
2022-23	Pot controller up gradation PL-2 ,Graphitized Cathodes & slotted anode	203	10000	2.03	18

Review Mechanism

Awards

	Measuring & recoding Energy consp	Correlating energy Consp with production	Comparing with Benchmark	Setting targets to control energy consp	Comparing energy consp w.r.t target on regular basis	Reporting Variance against Target	Implementing measures to correct variance
3	Recording	Analysing	Comparing	Target setting	Monitoring	Reporting	Controlling

Month Award Category Category Agency **CII National Awards for** Balco wins Excellent Energy Efficient unit by CII National Awards for Excellence in **Excellent Energy Efficient unit** BALCO Excellence in Energy Energy Management -2021 Aug'21 Management CII National Awards for Balco wins Most Useful presentation by CII National Awards for Excellence in Energy Most Useful presentation Aug'21 Excellence in Energy Management -2021 BALCO Management BALCO Bake oven team won 2nd Price in CII Kaizen competition 2021 **CII** Kaizen competition Aug'21 2nd Price in CII Kaizen competition BALCO Balco wins International Green Apple Award in Environment Category 2021 International Green Apple Award The Green Organisation Aug'21 BALCO CEO and WTD of BALCO wins Greentech leading director award 2021 Leading director award Green Tech Sep'21 CEO Vedanta Limited – BALCO 1200 MW unit wins – Energy Excellence award for Nov'21 **CII Encon Award PP-1200MW** CII Chhattisgarh State